Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373371

ABSTRACT

Gold nanoparticles (AuNPs) are promising candidates in various biomedical applications such as sensors, imaging, and cancer therapy. Understanding the influence of AuNPs on lipid membranes is important to assure their safety in the biological environment and to improve their scope in nanomedicine. In this regard, the present study aimed to analyze the effects of different concentrations (0.5, 1, and 2 wt.%) of dodecanethiol functionalized hydrophobic AuNPs on the structure and fluidity of zwitterionic 1-stearoyl-2-oleoyl-sn-glycerol-3-phosphocholine (SOPC) lipid bilayer membranes using Fourier-transform infrared (FTIR) spectroscopy and fluorescent spectroscopy. The size of AuNPs was found to be 2.2 ± 1.1 nm using transmission electron microscopy. FTIR results have shown that the AuNPs induced a slight shift in methylene stretching bands, while the band positions of carbonyl and phosphate group stretching were unaffected. Temperature-dependent fluorescent anisotropy measurements showed that the incorporation of AuNPs up to 2 wt.% did not affect the lipid order in membranes. Overall, these results indicate that the hydrophobic AuNPs in the studied concentration did not cause any significant alterations in the structure and membrane fluidity, which suggests the suitability of these particles to form liposome-AuNP hybrids for diverse biomedical applications including drug delivery and therapy.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Lipid Bilayers/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677770

ABSTRACT

Propolis is a resinous compound made by bees with well-known biological activity. However, comparisons between encapsulated and non-encapsulated propolis are lacking. Therefore, the antibacterial activity, effect on the phase transition of lipids, and inhibition of UV-induced lipid oxidation of the two forms of propolis were compared. The results showed that non-encapsulated propolis produces quicker effects, thus being better suited when more immediate effects are required (e.g., antibacterial activity). In order to gain an in-depth introspective on these effects, we further studied the synergistic effect of propolis compounds on the integrity of lipid membranes. The knowledge of component synergism is important for the understanding of effective propolis pathways and for the perspective of modes of action of synergism between different polyphenols in various extracts. Thus, five representative molecules, all previously isolated from propolis (chrysin, quercetin, trans-ferulic acid, caffeic acid, (-)-epigallocatechin-3-gallate) were mixed, and their synergistic effects on lipid bilayers were investigated, mainly using DSC. The results showed that some compounds (quercetin, chrysin) exhibit synergism, whereas others (caffeic acid, t-ferulic acid) do not show any such effects. The results also showed that the synergistic effects of mixtures composed from several different compounds are extremely complex to study, and that their prediction requires further modeling approaches.


Subject(s)
Propolis , Propolis/pharmacology , Quercetin/pharmacology , Flavonoids/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Lipids
3.
Biochim Biophys Acta Biomembr ; 1864(10): 183999, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35820494

ABSTRACT

(-)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.


Subject(s)
Catechin , Liposomes , Antioxidants , Catechin/analogs & derivatives , Lipids
4.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207189

ABSTRACT

Studying the interactions between lipid membranes and various bioactive molecules (e.g., polyphenols) is important for determining the effects they can have on the functionality of lipid bilayers. This knowledge allows us to use the chosen compounds as potential inhibitors of bacterial and cancer cells, for elimination of viruses, or simply for keeping our healthy cells in good condition. As studying those effect can be exceedingly difficult on living cells, model lipid membranes, such as liposomes, can be used instead. Liposomal bilayer systems represent the most basic platform for studying those interactions, as they are simple, quite easy to prepare and relatively stable. They are especially useful for investigating the effects of bioactive compounds on the structure and kinetics of simple lipid membranes. In this review, we have described the most basic methods available for preparation of liposomes, as well as the essential techniques for studying the effects of bioactive compounds on those liposomes. Additionally, we have provided details for an easy laboratory implementation of some of the described methods, which should prove useful especially to those relatively new on this research field.


Subject(s)
Lipid Bilayers/chemistry , Liposomes/chemistry , Polyphenols/chemistry , Membrane Fluidity , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...