Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 109(3): 456-468, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30145938

ABSTRACT

Coniferiporia sulphurascens is a facultative fungal pathogen that causes laminated root rot (LRR) in commercially important coniferous species worldwide. This fungus spreads primarily by way of vegetative mycelium transferring at points of contact between infected and healthy roots. Successful intervention to control LRR requires a better understanding of the population structure and genetic variability of C. sulphurascens. In this study, we investigated the population genetic structure and origin of C. sulphurascens populations in western North America and eastern Eurasia collected from multiple coniferous hosts. By analyzing the small and large mitochondrial ribosomal RNA subunit genes combined with six nuclear loci (internal transcribed spacer region, actin, RNA polymerase II largest subunit, RNA polymerase II second-largest subunit, laccase-like multicopper oxidase, and translation elongation factor 1-α), we observed that none of the alleles among the loci were shared between North American (NA) and Eurasian C. sulphurascens populations. In total, 55 multilocus genotypes (MLGs) were retrieved in C. sulphurascens isolates occurring in these two continental regions. Of these, 41 MLGs were observed among 58 isolates collected from widespread locations in British Columbia (Canada) and the northwestern United States, while 14 MLGs were observed among 16 isolates sampled in Siberia and Japan. Our data showed that the levels of genetic differentiation between the NA and Eurasian populations are much greater than the populations from within each continental region; the two continental populations formed clearly divergent phylogenetic clades or lineages since they were separated approximately 7.5 million years ago. Moreover, the Eurasian population could be the source of the NA population. Our study indicates the existence of cryptic diversity in this pathogen species, and strongly suggests that the NA and Eurasian populations represent two lineages, which have progressively diverged from each other in allopatry.


Subject(s)
Genetic Variation , Plant Diseases , British Columbia , Japan , North America , Northwestern United States , Phylogeny , Plant Diseases/microbiology , Sequence Analysis, DNA
2.
Phytopathology ; 100(4): 356-66, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20205539

ABSTRACT

Laminated root rot (LRR) disease, caused by the fungus Phellinus sulphurascens, is a major threat to coastal Douglas-fir (DF) (Pseudotsuga menziesii) forests in western North America. Understanding host-pathogen interactions of this pathosystem is essential to manage this important conifer root disease. Our research objectives were to identify DF pathogenesis-related (PR) genes and analyze their expression patterns over the course of infection. We constructed a cDNA library of Phellinus sulphurascens-infected DF seedling roots and sequenced a total of 3,600 random cDNA clones from this library. One of the largest groups of identified genes (203 cDNA clones) matched with chitinase genes reported in other plant species. We identified at least three class II and six class IV chitinase genes from DF seedlings. Quantitative reverse-transcriptase polymerase chain reaction analyses showed significant differential expression patterns locally in root tissues and systemically in needle tissues after fungal invasion. Nonetheless, there was a common trend in gene expression patterns for most of the chitinase genes: an upregulation within 12 h of pathogen inoculation followed by down-regulation within 2 to 3 days postinoculation (dpi), and then further upregulation within 5 to 7 dpi. Western immunoblot data showed differential accumulation of class IV chitinases in Phellinus sulphurascens-infected DF seedlings. Further detailed functional analyses will help us to understand the specific role of DF chitinases in defense against Phellinus sulphurascens infection.


Subject(s)
Fungi/isolation & purification , Plant Diseases/microbiology , Pseudotsuga/microbiology , Chitinases/genetics , Chitinases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Phylogeny , Plant Leaves/microbiology , Plant Roots/microbiology
3.
Mycol Res ; 113(Pt 6-7): 700-12, 2009.
Article in English | MEDLINE | ID: mdl-19249366

ABSTRACT

Interactions between roots of Douglas-fir (DF; Pseudotsuga menziesii) seedlings and the laminated root rot fungus Phellinus sulphurascens were investigated using scanning and transmission electron microscopy and immunogold labelling techniques. Scanning electron micrographs revealed that P. sulphurascens hyphae colonize root surfaces and initiate the penetration of root epidermal tissues by developing appressoria within 2 d postinoculation (dpi). During early colonization, intra- and intercellular fungal hyphae were detected. They efficiently disintegrate cellular components of the host including cell walls and membranes. P. sulphurascens hyphae penetrate host cell walls by forming narrow hyphal tips and a variety of haustoria-like structures which may play important roles in pathogenic interactions. Ovomucoid-WGA (wheat germ agglutinin) conjugated gold particles (10 nm) confirmed the occurrence and location of P. sulphurascens hyphae, while four specific host pathogenesis-related (PR) protein antibodies conjugated with protein A-gold complex (20 nm) showed the localization and abundance of these PR proteins in infected root tissues. A thaumatin-like protein and an endochitinase-like protein were both strongly evident and localized in host cell membranes. A DF-PR10 protein was localized in the cell walls and cytoplasm of host cells while an antimicrobial peptide occurred in host cell walls. A close association of some PR proteins with P. sulphurascens hyphae suggests their potential antifungal activities in DF roots.


Subject(s)
Basidiomycota/physiology , Basidiomycota/ultrastructure , Host-Pathogen Interactions , Plant Diseases/microbiology , Plant Proteins/immunology , Pseudotsuga/immunology , Hyphae/physiology , Hyphae/ultrastructure , Plant Diseases/immunology , Plant Proteins/metabolism , Plant Roots/immunology , Plant Roots/metabolism , Plant Roots/microbiology , Protein Transport , Pseudotsuga/metabolism , Pseudotsuga/microbiology
4.
Phytopathology ; 97(11): 1406-14, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18943509

ABSTRACT

ABSTRACT Several aspects of the host-pathogen interaction between Douglas-fir (Pseudotsuga menziesii) and the fungal pathogen Phellinus sulphurascens were investigated in an in vitro inoculation system using young seedlings and fungal mycelia. Light microscopy confirmed that P. sulphurascens mycelia can successfully penetrate host epidermal cells within 3 days postinoculation (dpi). Extensive fungal colonization and cortical cell decay occurred within 14 dpi. Western immunoblot studies showed significant upregulation (five to sixfold) of four specific pathogenesis-related (PR) proteins in infected roots. These proteins were a Douglas-fir thaumatin-like protein (PmTLP), an endochitinase protein (ECP), a Douglas-fir PR10 (DF-PR10) protein (PsemI), and a 10.6-kDa antimicrobial peptide (PmAMP1). The highest accumulation of PmTLP and PmAMP1 occurred at 12 dpi, whereas accumulations of the ECP and DF-PR10 proteins peaked at 7 dpi. For both inoculated and control Douglas-fir seedlings, only one of the four PR proteins, PmAMP1, was clearly detectable in needles. Immunolocalization experiments using fluorescein isothiocyanate-conjugated secondary antibodies confirmed accumulation of all four PR proteins mainly in and around cell walls of root cortical tissues. Overall, the highest immunofluorescence was observed in infected roots at 12 dpi, whereas labeling in control roots was negligible at all sample times. The ECP produced the highest fluorescence; the DF-PR10 the lowest. Upregulation and localization of these PR proteins in cortical tissues of inoculated roots suggest that they play a defensive role in response to infection by P. sulphurascens. This in vitro inoculation system will facilitate further proteomic and genomic studies of this important pathosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...