Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 174194, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38925394

ABSTRACT

The acidity of sea ice and snow plays a key role in the chemistry of the cryosphere; an important example lies in the photochemical catalytic release of reactive bromine in polar regions, facilitated at pHs below 6.5. We apply in-situ acid-base indicators to probe the microscopic acidity of the brine within the ice matrix in artificial sea water at a range of concentrations (0.35-70 PPT) and initial pHs (6-9). The results are supported by analogous measurements of the most abundant salts in seawater: NaCl, Na2SO4, and CaCO3. In the research herein, the acidity is expressed in terms of the Hammett acidity function, H2-. The obtained results show a pronounced acidity increase in sea water after freezing at -15 °C and during the subsequent cooling down to -50 °C. Importantly, we did not observe any significant hysteresis; the values of acidity upon warming markedly resembled those at the corresponding temperatures at cooling. The acidity increase is attributed to the minerals' crystallization, which is accompanied by a loss of the buffering capacity. Our observations show that lower salinity sea water samples (≤ 3.5 PPT) reach pH values below 6.5 at the temperature of -15 °C, whereas higher salinity ices attain such values only at -30 °C. The ensuing implications for polar chemistry and the relevance to the field measurements are discussed.

2.
Int J Pharm ; 650: 123691, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38072147

ABSTRACT

Freezing and lyophilization have been utilized for decades to stabilize pharmaceutical and food products. Freezing a solution that contains dissolved salt and/or organic matter produces pure primary ice crystal grains separated by freeze-concentrated solutions (FCS). The microscopic size of the primary ice crystals depends on the cooling conditions and the concentration of the solutes. It is generally accepted that primary ice crystals size influences the rate of sublimation and also can impact physico-chemical behaviour of the species in the FCS. This article, however, presents a case where the secondary ice formed inside the FCS plays a critical role. We microscoped the structures of ice-cast FCS with an environmental scanning electron microscope and applied the aggregation-sensitive spectroscopic probe methylene blue to determine how the microstructure affects the molecular arrangement. We show that slow cooling at -50 °C produces large salt crystals with a small specific surface, resulting in a high degree of molecular aggregation within the FCS. In contrast, fast liquid nitrogen cooling yields an ultrafine structure of salt crystals having a large specific surface area and, therefore, inducing smaller aggregation. The study highlights a critical role of secondary ice in solute aggregation and introduces methylene blue as a molecular probe to investigate freezing behaviour of aqueous systems with crystalline solute.


Subject(s)
Ice , Methylene Blue , Freezing , Water/chemistry , Solutions , Freeze Drying
3.
Int J Pharm ; 643: 123211, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37422143

ABSTRACT

Citrate buffers are commonly utilized in the field of biomolecule stabilization. We investigate their applicability in the frozen state within a range of initial pHs (2.5 to 8.0) and concentrations (0.02 to 0.60 M). Citrate buffer solutions subjected to various cooling and heating temperatures are examined in terms of the freezing-induced acidity changes, revealing that citrate buffers acidify upon cooling. The acidity is assessed with sulfonephthalein molecular probes frozen in the samples. Optical cryomicroscopy combined with differential scanning calorimetry was employed to investigate the causes of the observed acidity changes. The buffers partly crystallize and partly vitrify in the ice matrix; these processes influence the resulting pH and allow designing the optimal storage temperatures in the frozen state. The freezing-induced acidification apparently depends on the buffer concentration; at each pH, we suggest pertinent concentration, at which freezing causes minimal acidification.


Subject(s)
Citrates , Freezing , Buffers , Hydrogen-Ion Concentration , Freeze Drying , Calorimetry, Differential Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...