Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 126(23): 234801, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34170174

ABSTRACT

We use 3D simulations to demonstrate that high-quality ultrarelativistic electron bunches can be generated on reflection of a twisted laser beam off a plasma mirror. The unique topology of the beam with a twist index |l|=1 creates an accelerating structure dominated by longitudinal laser electric and magnetic fields in the near-axis region. We show that the magnetic field is essential for creating a train of dense monoenergetic bunches. For a 6.8 PW laser, the energy reaches 1.6 GeV with a spread of 5.5%. The bunch duration is 320 as, its charge is 60 pC, and density is ∼10^{27} m^{-3}. The results are confirmed by an analytical model for the electron energy gain. These results enable development of novel laser-driven accelerators at multi-PW laser facilities.

2.
Radiology ; 298(1): 3-17, 2021 01.
Article in English | MEDLINE | ID: mdl-33201793

ABSTRACT

Impending major hardware advances in cardiac CT include three areas: ultra-high-resolution (UHR) CT, photon-counting CT, and phase-contrast CT. Cardiac CT is a particularly demanding CT application that requires a high degree of temporal resolution, spatial resolution, and soft-tissue contrast in a moving structure. In this review, cardiac CT is used to highlight the strengths of these technical advances. UHR CT improves visualization of calcified and stented vessels but may result in increased noise and radiation exposure. Photon-counting CT uses multiple photon energies to reduce artifacts, improve contrast resolution, and perform material decomposition. Finally, phase-contrast CT uses x-ray refraction properties to improve spatial and soft-tissue contrast. This review describes these hardware advances in CT and their relevance to cardiovascular imaging.


Subject(s)
Heart Diseases/diagnostic imaging , Tomography, X-Ray Computed/methods , Heart/diagnostic imaging , Humans , Tomography, X-Ray Computed/trends
3.
Med Phys ; 46(10): e726-e734, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31357243

ABSTRACT

Recently developed short-pulsed laser sources garner high dose-rate beams such as energetic ions and electrons, x rays, and gamma rays. The biological effects of laser-generated ion beams observed in recent studies are different from those triggered by radiation generated using classical accelerators or sources, and this difference can be used to develop new strategies for cancer radiotherapy. High-power lasers can now deliver particles in doses of up to several Gy within nanoseconds. The fast interaction of laser-generated particles with cells alters cell viability via distinct molecular pathways compared to traditional, prolonged radiation exposure. The emerging consensus of recent literature is that the differences are due to the timescales on which reactive molecules are generated and persist, in various forms. Suitable molecular markers have to be adopted to monitor radiation effects, addressing relevant endogenous molecules that are accessible for investigation by noninvasive procedures and enable translation to clinical imaging. High sensitivity has to be attained for imaging molecular biomarkers in cells and in vivo to follow radiation-induced functional changes. Signal-enhanced MRI biomarkers enriched with stable magnetic nuclear isotopes can be used to monitor radiation effects, as demonstrated recently by the use of dynamic nuclear polarization (DNP) for biomolecular observations in vivo. In this context, nanoparticles can also be used as radiation enhancers or biomarker carriers. The radiobiology-relevant features of high dose-rate secondary radiation generated using high-power lasers and the importance of noninvasive biomarkers for real-time monitoring the biological effects of radiation early on during radiation pulse sequences are discussed.


Subject(s)
Biomarkers/metabolism , Lasers , Molecular Imaging/methods , Radiation Dosage , Humans , Magnetic Phenomena , Photons
4.
Life Sci Space Res (Amst) ; 19: 68-75, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30482285

ABSTRACT

One of the specific properties of laser-driven radiation is a broadband energy spectrum, which is also a feature of the space radiation fields. This property can be used in materials science studies or radiobiology experiments to simulate the energy spectrum of space radiation exposures in a ground-based laboratory. However, the differences in effects between the higher dose rates of laser generated radiation and the lower dose rates of space radiation have to be investigated in separate, prior studies. A design for a high-throughput irradiation experiment and the associated Monte Carlo dose calculations for a broadband energy proton beam depositing energy in a cell monolayer is presented. Dose control and dose uniformity in the cell monolayer was achieved in the simulations using a variable thickness Ni attenuator. A set of target doses from 0.2 Gy to 4 Gy was obtained and dose uniformity was optimized to less than 4% variability. This work opens the possibility of single or multiple exposures, controllable, high-throughput irradiation experiments on biological samples or materials, using broadband energy particle beams generated by lasers, with relevance for space applications.


Subject(s)
Cells/radiation effects , Radiometry/methods , Space Flight , Cells/cytology , Cells, Cultured , Humans , Lasers , Monte Carlo Method , Particle Accelerators , Protons , Radiation Dosage
5.
Appl Opt ; 57(2): 138-145, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29328157

ABSTRACT

Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.

6.
Appl Opt ; 54(19): 5956-61, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26193138

ABSTRACT

Moiré fringe deflectometry with grating interferometers is a technique that enables refraction-based x-ray imaging using a single exposure of an object. To obtain the refraction image, the method requires a reference fringe pattern (without the object). Our study shows that, in order to avoid artifacts, the reference pattern must be exactly matched in phase with the object fringe pattern. In experiments, however, it is difficult to produce a perfectly matched reference pattern due to unavoidable interferometer drifts. We present a simple method to obtain matched reference patterns using a phase-scan procedure to generate synthetic Moiré images. The method will enable deflectometric diagnostics of transient phenomena such as laser-produced plasmas and could improve the sensitivity and accuracy of medical phase-contrast imaging.

7.
Rev Sci Instrum ; 83(10): 10E511, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127018

ABSTRACT

The designs of single transmission grating based extreme ultraviolet (XUV) and vacuum ultraviolet (VUV) imaging spectrometers can be adapted to build an imaging radiometer for simultaneous measurement of both spectral ranges. This paper describes the design of such an imaging radiometer with dual transmission gratings. The radiometer will have an XUV coverage of 20-200 Å with a ∼10 Å resolution and a VUV coverage of 200-2000 Å with a ~50 Å resolution. The radiometer is designed to have a spatial view of 16°, with a 0.33° resolution and a time resolution of ~10 ms. The applications for such a radiometer include spatially resolved impurity monitoring and electron temperature measurements in the tokamak edge and the divertor. As a proof of principle, the single grating instruments were used to diagnose a low temperature reflex discharge and the relevant data is also included in this paper.

8.
Phys Med Biol ; 56(17): 5697-720, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21841214

ABSTRACT

A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 µm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 µm period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ∼25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ∼2 m long 'symmetric' interferometer operated in a high Talbot order.


Subject(s)
Cartilage, Articular/diagnostic imaging , Hand Joints/diagnostic imaging , Leg/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Animals , Cartilage/diagnostic imaging , Equipment Design , Humans , Interferometry , Phantoms, Imaging , Sensitivity and Specificity , Swine , Tendons/diagnostic imaging
9.
Rev Sci Instrum ; 81(10): 10E507, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034035

ABSTRACT

A free standing transmission grating based imaging spectrometer in the extreme ultraviolet range has been developed for the National Spherical Torus Experiment (NSTX). The spectrometer operates in a survey mode covering the approximate spectral range from 30 to 700 Å and has a resolving capability of δλ/λ on the order of 3%. Initial results from space resolved impurity measurements from NSTX are described in this paper.

10.
Appl Opt ; 49(25): 4677-86, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20820208

ABSTRACT

Differential phase-contrast imaging with hard x rays can have important applications in medicine, material sciences, and energy research. Phase-contrast methods based on microperiodic optics, such as shearing interferometry, are particularly attractive because they allow the use of conventional x-ray tubes. To enable shearing interferometry with x rays up to 100?keV, we propose using grazing-incidence microperiodic mirrors. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors, based on the difference in grazing-incidence reflectivity between a low-Z substrate and a high-Z film. Using this method, we produced prototype mirrors with 5-100?mum periods and 90?mm active length. Experimental tests with x rays up to 60?keV indicate good microperiodic mirror reflectivity and high-contrast fringe patterns, encouraging further development of the proposed imaging concept.

SELECTION OF CITATIONS
SEARCH DETAIL
...