Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 498: 23-30, 2016 11.
Article in English | MEDLINE | ID: mdl-27540873

ABSTRACT

Felis catus gammaherpesvirus 1 (FcaGHV1) is a newly described virus that infects domestic cats. To identify FcaGHV1 antigens, we developed an immunofluorescent antibody assay by expressing FcaGHV1 open reading frames (ORFs) in feline cells and incubating fixed cells with sera from FcaGHV1-positive cats. Of the seven ORFs tested, ORF52 and ORF38 had the strongest, most consistent antibody responses. We used recombinant ORF52 and ORF38 proteins to develop two FcaGHV1 ELISAs. These assays were used to detect reactivity in cats previously tested by qPCR for FcaGHV1 in blood cell DNA. Results indicated 32%FcaGHV1seroprevalence, compared to 15%qPCR-evaluated prevalence (n=133);all but one qPCR positive animal was seropositive. ELISA results confirmed infection risk factors previously identified by qPCR: geographic location, male sex, and adult age. These data suggest that FcaGHV1is a common infection of domestic cats that has a seropositive but often qPCR negative state characteristic of herpesviral latency.


Subject(s)
Cat Diseases/immunology , Cat Diseases/virology , Gammaherpesvirinae/genetics , Gammaherpesvirinae/immunology , Herpesviridae Infections/veterinary , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Cat Diseases/blood , Cat Diseases/diagnosis , Cats , Enzyme-Linked Immunosorbent Assay , Female , Male , Open Reading Frames , Real-Time Polymerase Chain Reaction , Risk Factors , Sensitivity and Specificity , Seroepidemiologic Studies , Viral Load
2.
Parasit Vectors ; 8: 658, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26701692

ABSTRACT

BACKGROUND: Epidemiological studies of disease exposure risk are frequently based on observational, cross-sectional data, and use statistical approaches as crucial tools for formalising causal processes and making predictions of exposure risks. However, an acknowledged limitation of traditional models is that the inferred relationships are correlational, cannot easily distinguish direct from indirect determinants of disease risk, and are often considerable simplifications of complex interrelationships. This may be particularly important when attempting to infer causality in patterns of co-infection through pathogen-facilitation. METHODS: We describe analyses of cross-sectional data using structural equation models (SEMs), a contemporary advancement on traditional regression approaches, based on our study system of feline gammaherpesvirus (FcaGHV1) in domestic cats. RESULTS: SEMs strongly supported a latent (host phenotype) variable associated with FcaGHV1 exposure and co-infection risk, suggesting these individuals are simply more likely to become infected with multiple pathogens. However, indications of pathogen-covariance (potential facilitation) were also variably detected: potentially among FcaGHV1, Bartonella spp and Mycoplasma spp. CONCLUSIONS: Our models suggest multiple exposures are primarily driven by host phenotypic traits, such as aggressive male phenotypes, and secondarily by pathogen-pathogen interactions. The results of this study demonstrate the application of SEMs to understanding epidemiological processes using observational data, and could be used more widely as a complementary tool to understand complex cross-sectional information in a wide variety of disciplines.


Subject(s)
Bacterial Infections/veterinary , Cat Diseases/epidemiology , Cat Diseases/transmission , Coinfection/epidemiology , Disease Transmission, Infectious , Epidemiologic Methods , Virus Diseases/veterinary , Animals , Bacterial Infections/epidemiology , Bacterial Infections/transmission , Bartonella/isolation & purification , Biostatistics , Cats , Cross-Sectional Studies , Gammaherpesvirinae/isolation & purification , Mycoplasma/isolation & purification , Risk Assessment , Virus Diseases/epidemiology , Virus Diseases/transmission
3.
Virology ; 460-461: 100-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25010275

ABSTRACT

Felis catus gammaherpesvirus 1 (FcaGHV1), recently discovered in the USA, was detected in domestic cats in Australia (11.4%, 95% confidence interval 5.9-19.1, n=110) and Singapore (9.6%, 95% confidence interval 5.9-14.6, n=176) using qPCR. FcaGHV1 qPCR positive cats were 2.8 times more likely to be sick than healthy. Risk factors for FcaGHV1 detection included being male, increasing age and coinfection with pathogenic retroviruses, feline immunodeficiency virus (FIV) or feline leukaemia virus. FcaGHV1 DNA was detected in multiple tissues from infected cats with consistently high virus loads in the small intestine. FcaGHV1 viral load was significantly higher in FIV-infected cats compared with matched controls, mimicking increased Epstein-Barr virus loads in human immunodeficiency virus-infected humans. FcaGHV1 is endemic in distant geographic regions and is associated with being sick and with coinfections. Horizontal transmission of FcaGHV1 is supported, with biting being a plausible route. A pathogenic role for FcaGHV1 in domestic cats is supported.


Subject(s)
Cat Diseases/virology , Endemic Diseases/veterinary , Gammaherpesvirinae/physiology , Herpesviridae Infections/veterinary , Animals , Animals, Domestic/virology , Australia/epidemiology , Cat Diseases/epidemiology , Cats , Female , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/pathogenicity , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Male , Singapore/epidemiology , United States/epidemiology , Viral Load
4.
J Virol ; 88(8): 3914-24, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24453374

ABSTRACT

UNLABELLED: Gammaherpesviruses (GHVs) are a diverse and rapidly expanding group of viruses associated with a variety of disease conditions in humans and animals. To identify felid GHVs, we screened domestic cat (Felis catus), bobcat (Lynx rufus), and puma (Puma concolor) blood cell DNA samples from California, Colorado, and Florida using a degenerate pan-GHV PCR. Additional pan-GHV and long-distance PCRs were used to sequence a contiguous 3.4-kb region of each putative virus species, including partial glycoprotein B and DNA polymerase genes. We identified three novel GHVs, each present predominantly in one felid species: Felis catus GHV 1 (FcaGHV1) in domestic cats, Lynx rufus GHV 1 (LruGHV1) in bobcats, and Puma concolor GHV 1 (PcoGHV1) in pumas. To estimate infection prevalence, we developed real-time quantitative PCR assays for each virus and screened additional DNA samples from all three species (n = 282). FcaGHV1 was detected in 16% of domestic cats across all study sites. LruGHV1 was detected in 47% of bobcats and 13% of pumas across all study sites, suggesting relatively common interspecific transmission. PcoGHV1 was detected in 6% of pumas, all from a specific region of Southern California. The risk of infection for each host varied with geographic location. Age was a positive risk factor for bobcat LruGHV1 infection, and age and being male were risk factors for domestic cat FcaGHV1 infection. Further characterization of these viruses may have significant health implications for domestic cats and may aid studies of free-ranging felid ecology. IMPORTANCE: Gammaherpesviruses (GHVs) establish lifelong infection in many animal species and can cause cancer and other diseases in humans and animals. In this study, we identified the DNA sequences of three GHVs present in the blood of domestic cats (Felis catus), bobcats (Lynx rufus), and pumas (Puma concolor; also known as mountain lions, cougars, and panthers). We found that these viruses were closely related to, but distinct from, other known GHVs of animals and represent the first GHVs identified to be native to these feline species. We developed techniques to rapidly and specifically detect the DNA of these viruses in feline blood and found that the domestic cat and bobcat viruses were widespread across the United States. In contrast, puma virus was found only in a specific region of Southern California. Surprisingly, the bobcat virus was also detected in some pumas, suggesting relatively common virus transmission between these species. Adult domestic cats and bobcats were at greater risk for infection than juveniles. Male domestic cats were at greater risk for infection than females. This study identifies three new viruses that are widespread in three feline species, indicates risk factors for infection that may relate to the route of infection, and demonstrates cross-species transmission between bobcats and pumas. These newly identified viruses may have important effects on feline health and ecology.


Subject(s)
Cat Diseases/virology , Gammaherpesvirinae/isolation & purification , Herpesviridae Infections/veterinary , Lynx/virology , Puma/virology , Animals , Animals, Wild/virology , Cat Diseases/epidemiology , Cats , Female , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Male , Molecular Sequence Data , Phylogeny , Risk Factors , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...