Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 358: 129-135, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29990799

ABSTRACT

This study investigates the performance of membrane-based ozonation and peroxone processes, regarding the transformation of carbamazepine (CBZ), benzotriazole (BZT), p-chlorobenzoic acid (pCBA) and atrazine (ATZ) in natural surface waters, as well as the formation of bromates. Ozonation, performed with the use of ceramic membrane contactor, was able to diminish CBZ concentration below 0.1 µM at 0.4 mg O3/mg DOC, i.e. presenting >90% removal rate, whereas the transformation of BZT, pCBA and ATZ was not exceeded 70%, 57% and 49%, respectively, under the same experimental conditions. The addition of H2O2 reduced the removal efficiency of CBZ, since up to -8% transformation values were observed at 0.1 mg O3/mg DOC. In contrast, the transformation of ozone-resistant compounds pCBA and ATZ was slightly improved by approximately 5-10%, at 0.8 mg O3/mg DOC. Membrane-based oxidative treatment of surface water resulted to high bromate concentrations (49 µg/L and 28 µg/L for ozone and peroxone process, respectively, at 0.8 mg O3/mg DOC). The results obtained by using the membrane contactor were also compared with the corresponding from conventional batch experiments. These results suggest that the implementation of membrane contactors with the highest possible inner surface per volume along with the use of low ozone gas concentration are required to improve the removal of micropollutants and diminish bromate formation.

2.
Environ Sci Pollut Res Int ; 25(13): 12246-12255, 2018 May.
Article in English | MEDLINE | ID: mdl-28656574

ABSTRACT

The present study aims to evaluate changes in the structure-composition of natural organic matter (NOM) that occur after the application of bubbleless ozonation or peroxone treatment of surface waters. The oxidation experiments (using 0.5-2 mg O3/mg DOC, or 2:1 O3:H2O2 molar ratio) were performed in a continuous mode, using a tubular ceramic membrane contactor. Fluorescence spectroscopy (emission-excitation matrix) and liquid chromatography-organic carbon detection (LC-OCD) were mainly used for the detailed DOC characterization. In brief, the application of single ozonation resulted to high reduction of humic-like peak fluorescence intensities (50-85%) and also to the formation of two new peaks in the region of protein-like components. The co-addition of H2O2 did not present the anticipated increase in the reduction of fluorescence intensity; however, it resulted to the further oxidation of protein-like fluorophores. LC-OCD measurements confirmed the decrease of average molecular weight of NOM during ozone treatment, due to the gradual degradation of biopolymers (14-23%) and humic substances (11-17%) towards building blocks and low molecular weight (LMW) neutrals. Advanced oxidation process (AOP) treatment by the mixture O3/H2O2 resulted in the simultaneous decrease of building blocks and LMW neutral concentrations. Conventional batch ozonation and AOP experiments were conducted using ozone-saturated solutions to investigate the effect of different contacting patterns. The results revealed that the different reaction pathways followed during bubbleless and conventional batch experiments may also influence the formation of NOM oxidation intermediates.


Subject(s)
Hydrogen Peroxide/chemistry , Organic Chemicals/analysis , Ozone/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Biopolymers/analysis , Chromatography, Liquid , Humic Substances/analysis , Membranes, Artificial , Oxidation-Reduction , Spectrometry, Fluorescence
3.
Chemosphere ; 170: 33-40, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27974269

ABSTRACT

The aim of this study was to investigate possible implications of natural and wastewater derived organic matter in river water that is subsequently used following treatment for drinking purposes. River water was subjected to lab-scale ozonation experiments under different ozone doses (0.1, 0.4, 0.8, 1.0 and 2.0 mgO3/mgC) and contact times (1, 3, 5, 8 and 10 min). Mixtures of river water with humic acids or wastewaters (sewage wastewater and secondary effluents) at different proportions were also ozonated. Dissolved organic carbon and biodegradable dissolved organic carbon concentrations as well as spectroscopic characteristics (UV absorbance and fluorescence intensities) of different types of dissolved organic matter and possible changes due to the ozonation treatment are presented. River water, humic substances and wastewater exhibited distinct spectroscopic characteristics that could serve for pollution source tracing. Wastewater impacted surface water results in higher formation of carbonyl compounds. However, the formation yield (µg/mgC) of wastewaters was lower than that of surface water possibly due to different composition of wastewater derived organic matter and the presence of scavengers, which may limit the oxidative efficiency of ozone.


Subject(s)
Fresh Water/chemistry , Humic Substances/analysis , Organic Chemicals/chemistry , Ozone/chemistry , Wastewater/analysis , Carbon/chemistry , Oxidation-Reduction , Rivers , Spectrophotometry, Ultraviolet , Water Pollutants, Chemical/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...