Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Brain Behav Immun ; 116: 140-149, 2024 02.
Article in English | MEDLINE | ID: mdl-38070619

ABSTRACT

Cancers of the central nervous system (CNS) are unique with respect to their tumor microenvironment. Such a status is due to immune-privilege and the cellular behaviors within a highly networked, neural-rich milieu. During tumor development in the CNS, neural, immune and cancer cells establish complex cell-to-cell communication networks which mimic physiological functions, including paracrine signaling and synapse-like formations. This crosstalk regulates diverse pathological functions contributing to tumor progression. In the CNS, regulation of physiological and pathological functions relies on various cell signaling and transcription programs. At the core of these events lies the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a master transcriptional regulator in the CNS. CREB is a kinase inducible transcription factor which regulates many CNS functions, including neurogenesis, neuronal survival, neuronal activation and long-term memory. Here, we discuss how CREB-regulated mechanisms operating in diverse cell types, which control development and function of the CNS, are co-opted in CNS tumors.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Neoplasms , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Signal Transduction/physiology , Central Nervous System/metabolism , Immunity , Tumor Microenvironment
2.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139284

ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative disease marked by chronic neuroinflammation thought to be mediated by the inflammasome pathway. Connexin 43 (Cx43) hemichannels contribute to the activation of the inflammasome through the release of adenosine triphosphate (ATP) inflammasome activation signals. The objective of the study was to evaluate if the Cx43 hemichannel blocker, tonabersat, is effective in modulating the inflammatory response and reducing disability in the myelin oligodendrocyte glycoprotein 35-55-induced experimental autoimmune encephalomyelitis (MOG35-55 EAE) model of MS. Here, we show that the Cx43 hemichannel blocking drug, tonabersat, significantly reduced expression of neuroinflammatory markers for microglial activation (ionized calcium-binding adapter molecule 1 (Iba1)) and astrogliosis (glial fibrillary acidic protein (GFAP)) while preserving myelin basic protein (MBP) expression levels in the corpus callosum, motor cortex, and striatum regions of the brain in MOG35-55 EAE mice. Reduced NOD-like receptor protein 3 (NLRP3) inflammasome complex assembly and Caspase-1 activation confirmed the drug's mode of action. MOG35-55 EAE mice showed clinical signs of MS, but MOG35-55 EAE mice treated with tonabersat retained behavior closer to normal. These data suggest that clinical trial phase IIb-ready tonabersat may merit further investigation as a promising candidate for MS treatment.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Neurodegenerative Diseases , Mice , Animals , Multiple Sclerosis/drug therapy , Connexin 43/metabolism , Inflammasomes/metabolism , Disease Progression , Mice, Inbred C57BL , Disease Models, Animal
3.
Exp Cell Res ; 431(1): 113743, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37591452

ABSTRACT

A critical challenge in the treatment of glioblastoma (GBM) is its highly invasive nature which promotes cell migration throughout the brain and hinders surgical resection and effective drug delivery. GBM cells demonstrate augmented invasive capabilities following exposure to the current gold standard treatment of radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ), resulting in rapid disease recurrence. Elucidating the mechanisms employed by post-treatment invasive GBM cells is critical to the development of more effective therapies. In this study, we utilized a Nanostring® Cancer Progression gene expression panel to identify candidate genes that may be involved in enhanced GBM cell invasion after treatment with clinically relevant doses of RT/TMZ. Our findings identified thrombospondin-1 (THBS1) as a pro-invasive gene that is upregulated in these cells. Immunofluorescence staining revealed that THBS1 localised within functional matrix-degrading invadopodia that formed on the surface of GBM cells. Furthermore, overexpression of THBS1 resulted in enhanced GBM cell migration and secretion of MMP-2, which was reduced with silencing of THBS1. The preliminary data demonstrates that THBS1 is associated with invadopodia in GBM cells and is likely involved in the invadopodia-mediated invasive process in GBM cells exposed to RT/TMZ treatment. Therapeutic inhibition of THBS1-mediated invadopodia activity, which facilitates GBM cell invasion, should be further investigated as a treatment for GBM.


Subject(s)
Glioblastoma , Podosomes , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Neoplasm Recurrence, Local , Temozolomide/pharmacology , Brain
4.
Cell Oncol (Dordr) ; 46(4): 909-931, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37014551

ABSTRACT

PURPOSE: The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS: Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS: We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS: Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.


Subject(s)
Extracellular Vesicles , Glioblastoma , Podosomes , Humans , Glioblastoma/pathology , Temozolomide/pharmacology , Podosomes/metabolism , Podosomes/pathology , Proteomics
5.
Cell Oncol (Dordr) ; 46(3): 589-602, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36567397

ABSTRACT

PURPOSE: Tumor cells thrive by adapting to the signals in their microenvironment. To adapt, cancer cells activate signaling and transcriptional programs and migrate to establish micro-niches, in response to signals from neighboring cells and non-cellular stromal factors. Understanding how the tumor microenvironment evolves during disease progression is crucial to deciphering the mechanisms underlying the functional behavior of cancer cells. METHODS: Multiplex immunohistochemistry, spatial analysis and histological dyes were used to identify and measure immune cell infiltration, cell signal activation and extracellular matrix deposition in low-grade, high-grade astrocytoma and glioblastoma. RESULTS: We show that lower grade astrocytoma tissue is largely devoid of infiltrating immune cells and extracellular matrix proteins, while high-grade astrocytoma exhibits abundant immune cell infiltration, activation, and extensive tissue remodeling. Spatial analysis shows that most T-cells are restricted to perivascular regions, but bone marrow-derived macrophages penetrate deep into neoplastic cell-rich regions. The tumor microenvironment is characterized by heterogeneous PI3K, MAPK and CREB signaling, with specific signaling profiles correlating with distinct pathological hallmarks, including angiogenesis, tumor cell density and regions where neoplastic cells border the extracellular matrix. Our results also show that tissue remodeling is important in regulating the architecture of the tumor microenvironment during tumor progression. CONCLUSION: The tumor microenvironment in malignant astrocytoma, exhibits changes in cell composition, cell signaling activation and extracellular matrix deposition during disease development and that targeting the extracellular matrix, as well as cell signaling activation will be critical to designing personalized therapy.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Humans , Tumor Microenvironment , Glioma/metabolism , Astrocytoma/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Brain Neoplasms/pathology
6.
Mol Cell Biochem ; 478(6): 1251-1267, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36302993

ABSTRACT

Glioblastoma (GBM) is the most prevalent primary central nervous system tumour in adults. The lethality of GBM lies in its highly invasive, infiltrative, and neurologically destructive nature resulting in treatment failure, tumour recurrence and death. Even with current standard of care treatment with surgery, radiotherapy and chemotherapy, surviving tumour cells invade throughout the brain. We have previously shown that this invasive phenotype is facilitated by actin-rich, membrane-based structures known as invadopodia. The formation and matrix degrading activity of invadopodia is enhanced in GBM cells that survive treatment. Drug repurposing provides a means of identifying new therapeutic applications for existing drugs without the need for discovery or development and the associated time for clinical implementation. We investigate several FDA-approved agents for their ability to act as both cytotoxic agents in reducing cell viability and as 'anti-invadopodia' agents in GBM cell lines. Based on their cytotoxicity profile, three agents were selected, bortezomib, everolimus and fludarabine, to test their effect on GBM cell invasion. All three drugs reduced radiation/temozolomide-induced invadopodia activity, in addition to reducing GBM cell viability. These drugs demonstrate efficacious properties warranting further investigation with the potential to be implemented as part of the treatment regime for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/metabolism , Drug Repositioning , Brain Neoplasms/metabolism , Cell Line, Tumor , Temozolomide/pharmacology
7.
Cancers (Basel) ; 14(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36230886

ABSTRACT

Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.

8.
Methods Cell Biol ; 170: 21-30, 2022.
Article in English | MEDLINE | ID: mdl-35811101

ABSTRACT

Cancer stem cells are defined as low-abundance, quiescent cells and are considered a major cellular source of tumor recurrence following therapy, which identifies these cells as important therapeutic targets for difficult-to-treat cancers, including high-grade gliomas. By contrast to the highly proliferative bulk tumor cells, glioma stem cells (GSC) are slow-cycling, and therefore less sensitive to DNA damaging cytotoxic drugs. GSC are also less reliant on aerobic glycolytic metabolism, leading to inadequate clearing of GSC by chemotherapy and radiotherapy. The definition of GSC is based on the expression of specific stem cell protein markers. This method of GSC isolation is successful in isolating cell populations that can reliably recapitulate the tumor. However, cell populations that lack stem marker expression may also be capable of tumor recapitulation. Therefore, robust, reproducible methods for isolating GSC are required to identify and isolate cells with stem cell characteristics. Here, we provide a comprehensive and reproducible protocol for the isolation of slow-cycling GSC. Using this method, GSC isolated retain key characteristics of the cells in situ, including expression of genes associated with cell quiescence and invasive potential, compared to non-quiescent cell populations. Thus, isolation of GSC gated on cell proliferation offers a reliable alternative method for in vitro GSC identification, that adequately mirrors the physiological properties of GSC seen in vivo.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Glioblastoma/pathology , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , Neoplastic Stem Cells/pathology
9.
Int J Mol Sci ; 23(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35269915

ABSTRACT

Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression. EVs were isolated from 3 GSCs by serial centrifugation. NanoSight measurement, cryo-electron microscopy and live imaging were used to study the EVs size, morphology and uptake, respectively. The non-GSC glioma cell lines LN229 and U118 were utilised as a recipient cell model. Wound healing assays were performed to detect cell migration. Colony formation, cell viability and invadopodium assays were conducted to detect cell survival of irradiated recipient cells and cell invasion post GSC-EV treatment. NanoString miRNA global profiling was used to select for the GSC-EVs' specific miRNAs. All three GSC cell lines secreted different amounts of EVs, and all expressed consistent levels of CD9 but different level of Alix, TSG101 and CD81. EVs were taken up by both LN229 and U118 recipient cells. In the presence of GSC-EVs, these recipient cells survived radiation exposure and initiated colony formation. After GSC-EVs exposure, LN229 and U118 cells exhibited an invasive phenotype, as indicated by an increase in cell migration. We also identified 25 highly expressed miRNAs in the GSC-EVs examined, and 8 of these miRNAs can target PTEN. It is likely that GSC-EVs and their specific miRNAs induced the phenotypic changes in the recipient cells due to the activation of the PTEN/Akt pathway. This study demonstrated that GSC-EVs have the potential to induce radiation resistance and modulate the tumour microenvironment to promote glioma progression. Future therapeutic studies should be designed to interfere with these GSC-EVs and their specific miRNAs.


Subject(s)
Extracellular Vesicles , Glioma , MicroRNAs , Cryoelectron Microscopy , Extracellular Vesicles/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/radiotherapy , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment
10.
Cancers (Basel) ; 13(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34831020

ABSTRACT

Glioblastoma (GBM) is the most common primary central nervous system tumor in adults, accounting for approximately 80% of all brain-related malignancies [...].

11.
Front Biosci (Landmark Ed) ; 26(9): 628-642, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34590472

ABSTRACT

Despite their differences, central nervous system (CNS) tumors and degenerative diseases share important molecular mechanisms underlying their pathologies, due to their common anatomy. Here we review the role of the renin-angiotensin system (RAS) in CNS tumors and degenerative diseases, to highlight common molecular features and examine the potential merits in repurposing drugs that inhibit the RAS, its bypass loops, and converging signaling pathways. The RAS consists of key components, including angiotensinogen, (pro)renin receptor (PRR), angiotensin-converting enzyme 1 (ACE1), angiotensin-converting enzyme 2 (ACE2), angiotensin I (ATI), angiotensin II (ATII), ATII receptor 1 (AT1R), ATII receptor 2 (AT2R) and the Mas receptor (MasR). The RAS is integral to systemic and cellular pathways that regulate blood pressure and body fluid equilibrium and cellular homeostasis. The main effector of the RAS is ATII which exerts its effect by binding to AT1R and AT2R through two competitive arms: an ACE1/ATII/AT1R axis, which is involved in regulating oxidative stress and neuroinflammation pathways, and an ATII/AT2R and/or ATII/ACE2/Ang(1-7)/MasR axis that potentiates neuroprotection pathways. Alterations of these axes are associated with cellular dysfunction linked to CNS diseases. The generation of ATII is also influenced by proteases that constitute bypass loops of the RAS. These bypass loops include cathepsins B, D and G and chymase and aminopeptidases. The RAS is also influenced by converging pathways such as the Wnt/ß-catenin pathway which sits upstream of the RAS via PRR, a key component of the RAS. We also discuss the co-expression of components of the RAS and markers of pluripotency, such as OCT4 and SOX2, in Parkinson's disease and glioblastoma, and their potential influences on transduction pathways involving the Wnt/ß-catenin, MAPK/ERK, PI3K/AKT and vacuolar (H+) adenosine triphosphatase (V-ATPase) signaling cascades. Further research investigating modulation of the ACE1/ATII/AT1R and ACE2/Ang(1-7)/MasR axes with RAS inhibitors may lead to novel treatment of CNS tumors and degenerative diseases. The aim of this review article is to discuss and highlight experimental and epidemiological evidence for the role of the RAS, its bypass loops and convergent signaling pathways in the pathogenesis of CNS tumors and degenerative diseases, to direct research that may lead to the development of novel therapy.


Subject(s)
Central Nervous System Neoplasms , Neuroinflammatory Diseases , Renin-Angiotensin System , Humans , Signal Transduction
12.
Br J Cancer ; 125(11): 1466-1476, 2021 11.
Article in English | MEDLINE | ID: mdl-34349251

ABSTRACT

The prognosis for patients with glioblastoma (GBM), the most common and malignant type of primary brain tumour, is very poor, despite current standard treatments such as surgery, radiotherapy and chemotherapy. Moreover, the immunosuppressive tumour microenvironment hinders the development of effective immunotherapies for GBM. Cytokines such as interleukin-10 (IL-10) play a major role in modulating the activity of infiltrating immune cells and tumour cells in GBM, predominantly conferring an immunosuppressive action; however, in some circumstances, IL-10 can have an immunostimulatory effect. Elucidating the function of IL-10 in GBM is necessary to better strategise and improve the efficacy of immunotherapy. This review discusses the immunostimulatory and immunosuppressive roles of IL-10 in the GBM tumour microenvironment while considering IL-10-targeted treatment strategies. The molecular mechanisms that underlie the expression of IL-10 in various cell types are also outlined, and how this resulting information might provide an avenue for the improvement of immunotherapy in GBM is explored.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Interleukin-10/metabolism , Disease Progression , Humans , Prognosis
13.
J Clin Neurosci ; 86: 252-259, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33775337

ABSTRACT

Significant restoration of visual function can occur following pituitary tumor resection, although the time course of visual recovery remains poorly understood. This single-centre, two-year, prospective cohort study investigated the temporal patterns of visual recovery in consecutive patients undergoing pituitary tumor resection, between 2009 and 2018. Eyes were stratified based on pre-operative optical coherence tomography (OCT) retinal nerve fibre layer (RNFL) thickness measurements, with thin RNFL being defined as those within the fifth-percentile of age-matched normative values, and normal RNFL as those above the fifth-percentile. Visual function and OCT parameters were assessed pre-operatively, and at 6 weeks, 6 months, and 2 years post-operatively. 456 eyes of 228 patients (mean ± SD age, 53 ± 15 years) were included, of which 114 (25%) eyes had thin RNFL pre-operatively. Visual field recovery was observed in both groups during the first 6 weeks post-operatively (all Q ≤ 0.02), although improvements in visual field parameters between 6 weeks to 6 months were limited to eyes with thin RNFL (both Q < 0.05). No further improvements in visual function were detected beyond 6 months in both groups (both Q > 0.50). Similar trends were observed in linear regression analysis according to baseline visual function in both groups. In summary, eyes with normal RNFL thickness at baseline experienced most of their recovery within the first six weeks following surgery, while eyes with thin RNFL exhibited gradual improvements during the first six months. These findings have important implications when providing patient counselling and prognostication in the pre-operative setting.


Subject(s)
Adenoma/diagnostic imaging , Adenoma/surgery , Pituitary Neoplasms/diagnostic imaging , Pituitary Neoplasms/surgery , Recovery of Function/physiology , Visual Fields/physiology , Adult , Aged , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Optic Chiasm/diagnostic imaging , Optic Chiasm/surgery , Prospective Studies , Retina/diagnostic imaging , Time Factors , Tomography, Optical Coherence/methods , Tomography, Optical Coherence/trends
14.
Cancer Immunol Immunother ; 70(7): 1811-1820, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33389014

ABSTRACT

Recent developments in cancer immunotherapy promise better outcomes for cancer patients, although clinical trials for difficult to treat cancers such as malignant brain cancer present special challenges, showing little response to first generation immunotherapies. Reasons for differences in immunotherapy response in some cancer types are likely due to the nature of tumor microenvironment, which harbors multiple cell types which interact with tumor cells to establish immunosuppression. The cell types which appear to hold the key in regulating tumor immunosuppression are the tumor-infiltrating immune cells. The current standard treatment for difficult to treat cancer, including the most malignant brain cancer, glioblastoma, continues to offer a bleak outlook for patients. Immune-profiling and correlation with pathological and clinical data will lead to a deeper understanding of the tumor immune microenvironment and contribute toward the selection, optimization and development of novel precision immunotherapies. Here, we review the current understanding of the tumor microenvironmental landscape in glioblastoma with a focus on next-generation technologies including multiplex immunofluorescence and computational approaches to map the brain tumor microenvironment to decipher the role of the immune system in this lethal malignancy.


Subject(s)
Biomarkers, Tumor/immunology , Brain Neoplasms/drug therapy , Computer Simulation , Immune Tolerance/immunology , Immunohistochemistry/methods , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Humans , Molecular Targeted Therapy , Precision Medicine
15.
Cancers (Basel) ; 12(10)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33049911

ABSTRACT

Glioblastoma (GBM) is the most common primary central nervous system tumor in adults. It is a highly invasive disease, making it difficult to achieve a complete surgical resection, resulting in poor prognosis with a median survival of 12-15 months after diagnosis, and less than 5% of patients survive more than 5 years. Surgical, instrument technology, diagnostic and radio/chemotherapeutic strategies have slowly evolved over time, but this has not translated into significant increases in patient survival. The current standard of care for GBM patients involving surgery, radiotherapy, and concomitant chemotherapy temozolomide (known as the Stupp protocol), has only provided a modest increase of 2.5 months in median survival, since the landmark publication in 2005. There has been considerable effort in recent years to increase our knowledge of the molecular landscape of GBM through advances in technology such as next-generation sequencing, which has led to the stratification of the disease into several genetic subtypes. Current treatments are far from satisfactory, and studies investigating acquired/inherent resistance to current therapies, restricted drug delivery, inter/intra-tumoral heterogeneity, drug repurposing and a tumor immune-evasive environment have been the focus of intense research over recent years. While the clinical advancement of GBM therapeutics has seen limited progression compared to other cancers, developments in novel treatment strategies that are being investigated are displaying encouraging signs for combating this disease. This aim of this editorial is to provide a brief overview of a select number of these novel therapeutic approaches.

16.
Cancers (Basel) ; 12(10)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050088

ABSTRACT

Glioblastoma (GBM) is the most prevalent and malignant type of primary brain cancer. The rapid invasion and dissemination of tumor cells into the surrounding normal brain is a major driver of tumor recurrence, and long-term survival of GBM patients is extremely rare. Actin-rich cell membrane protrusions known as invadopodia can facilitate the highly invasive properties of GBM cells. Ion channels have been proposed to contribute to a pro-invasive phenotype in cancer cells and may also be involved in the invadopodia activity of GBM cells. GBM cell cytotoxicity screening of several ion channel drugs identified three drugs with potent cell killing efficacy: flunarizine dihydrochloride, econazole nitrate, and quinine hydrochloride dihydrate. These drugs demonstrated a reduction in GBM cell invadopodia activity and matrix metalloproteinase-2 (MMP-2) secretion. Importantly, the treatment of GBM cells with these drugs led to a significant reduction in radiation/temozolomide-induced invadopodia activity. The dual cytotoxic and anti-invasive efficacy of these agents merits further research into targeting ion channels to reduce GBM malignancy, with a potential for future clinical translation in combination with the standard therapy.

17.
Am J Ophthalmol ; 218: 247-254, 2020 10.
Article in English | MEDLINE | ID: mdl-32533947

ABSTRACT

PURPOSE: To investigate the association between optical coherence tomography (OCT) parameters and long-term visual recovery following optic chiasm decompression surgery. DESIGN: Prospective cohort study. METHODS: Consecutive patients who underwent pituitary or parasellar tumor resection between January 2009 to December 2018 were recruited in a single-center, 2-year prospective, longitudinal cohort study. Best-corrected visual acuity, visual fields, and OCT retinal nerve fiber layer (RNFL) thickness, macular thickness and volume were assessed preoperatively, and at 6 weeks, 6 months, and 2 years postoperatively. Long-term visual field recovery and maintenance were defined as a mean deviation of >-3 at 24 months, and visual acuity recovery and maintenance were defined as a logarithm of minimal angle of resolution (logMAR) of 0 (Snellen 20/20) or better at 24 months. RESULTS: A total of 239 patients (129 men, 110 women; mean ± SD age: 52 ± 16 years) were included. Multiple logistic regression analysis demonstrated that increased inferior RNFL thickness (per 10 µm) was associated with higher odds of long-term visual field recovery and maintenance (odds ratio [OR]: 1.26; 95% confidence interval [CI]: 1.12-1.41; Q < 0.001), and greater superior RNFL thickness (per 10 µm) was associated with higher odds of visual acuity recovery and maintenance (OR: 1.13; 95% CI: 1.03-1.27; Q = 0.031). A multivariable risk prediction model developed for long-term visual field recovery and maintenance that incorporated age, preoperative visual function, and RNFL thickness demonstrated C-statistics of 0.83 (95% CI: 0.72-0.94). CONCLUSION: Preoperative RNFL thickness was associated with long-term visual recovery and maintenance following chiasmal decompression. The multivariable risk prediction model developed in the present study may assist with preoperative patient counseling and prognosis.


Subject(s)
Pituitary Neoplasms/surgery , Recovery of Function/physiology , Visual Acuity/physiology , Visual Fields/physiology , Adult , Aged , Decompression, Surgical , Female , Humans , Longitudinal Studies , Male , Middle Aged , Nerve Fibers/pathology , Optic Chiasm/pathology , Optic Chiasm/surgery , Pituitary Neoplasms/pathology , Prognosis , Prospective Studies , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence
18.
Crit Rev Clin Lab Sci ; 57(4): 227-252, 2019 12 22.
Article in English | MEDLINE | ID: mdl-31865806

ABSTRACT

Research on the role of extracellular vesicles (EVs) in disease pathogenesis has been rapidly growing over the last two decades. As EVs can mediate intercellular communication, they can ultimately facilitate both normal and pathological processes through the delivery of their bioactive cargo, which may include nucleic acids, proteins and lipids. EVs have emerged as important regulators of brain tumors, capable of transferring oncogenic proteins, receptors, and small RNAs that may support brain tumor progression, including in the most common type of brain cancer, glioma. Investigating the role of EVs in glioma is crucial, as the most malignant glioma, glioblastoma (GBM), is incurable with a dismal median survival of 12-15 months. EV research in GBM has primarily focused on circulating brain tumor-derived vesicles in biofluids, such as blood and cerebrospinal fluid (CSF), investigating their potential as diagnostic and prognostic biomarkers. Gaining a greater understanding of the role of EVs and their cargo in brain tumor progression may contribute to the discovery of novel diagnostics and therapeutics. In this review, we summarize the known and emerging functions of EVs in glioma biology and pathogenesis, as well as their emerging biomarker potential.

19.
Cells ; 8(11)2019 10 31.
Article in English | MEDLINE | ID: mdl-31683669

ABSTRACT

Patients with glioblastoma (GB), a highly aggressive brain tumor, have a median survival of 14.6 months following neurosurgical resection and adjuvant chemoradiotherapy. Quiescent GB cancer stem cells (CSCs) invariably cause local recurrence. These GB CSCs can be identified by embryonic stem cell markers, express components of the renin-angiotensin system (RAS) and are associated with circulating CSCs. Despite the presence of circulating CSCs, GB patients rarely develop distant metastasis outside the central nervous system. This paper reviews the current literature on GB growth inhibition in relation to CSCs, circulating CSCs, the RAS and the novel therapeutic approach by repurposing drugs that target the RAS to improve overall symptom-free survival and maintain quality of life.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/metabolism , Renin-Angiotensin System , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Brain Neoplasms/metabolism , Cathepsin B/genetics , Cathepsin B/metabolism , Drug Repositioning , Epithelial-Mesenchymal Transition , Glioblastoma/metabolism , Humans , Neoplasm Metastasis , Renin-Angiotensin System/drug effects
20.
Adv Exp Med Biol ; 1139: 1-21, 2019.
Article in English | MEDLINE | ID: mdl-31134492

ABSTRACT

Glioblastoma is a primary tumor of the brain with a poor prognosis. Pathological examination shows that this disease is characterized by intra-tumor morphological heterogeneity, while numerous and ongoing genomic analysis reveals multiple layers of heterogeneity. Intra-tumor and patient-to-patient heterogeneity is underpinned by cellular, genetic, and molecular heterogeneity, which is thought to be key determinants of time to tumor recurrence and resistance to therapy. The key cell type believed to contribute to the establishment and ongoing evolution of tumor heterogeneity is a glioma stem cell (GSC) subpopulation. In this chapter, we review, highlight, and discuss controversies and clinical relevance of glioblastoma heterogeneity and its cellular basis. Characterization of how cancer stem cells (CSCs) behave is important in understanding how tumors are initiated and how they recur following initial treatment.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells , Glioma , Humans , Neoplasm Recurrence, Local
SELECTION OF CITATIONS
SEARCH DETAIL
...