Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(11): 7520-7530, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32432862

ABSTRACT

This paper discloses a simple and productive hybridizing engineering (HE) strategy for the 3d transition-metal-ion (Mn+ = Fe3+, Fe2+, Co2+, Ni2+)-doped (nBu4N)4W10O32 (Mn+-TBADT) compounds as highly efficient visible-light catalysts. Ultraviolet visible (UV-vis), Fourier transform infrared (FT-IR) and photoluminescence (PL) spectra, and cyclic voltammetry (CV) characterizations indicate that the synthetic quality, redox capacity, and visible light harvesting efficiency of TBADT, especially the separation efficiency of its photogenerated electron-hole pairs, are regulated by the metal ion dopants and gradually improved with a change of the dopant from Fe3+, Fe2+, and Co2+ to Ni2+, along with a continuous and significant enhancement of its photocatalytic efficiency in the visible-light-triggered selective oxidation of ethylbenzene with dioxygens in acetonitrile. The best 0.5 mol % Ni2+-doped TBADT can achieve a ca. 55% conversion under optimal reaction conditions and also exhibits much higher photocatalytic activity for the photo-oxidation of toluene, cyclohexane, and benzyl alcohol compared to pure TBADT. This HE strategy showcases great potential in improving the photocatalysis performance of TBADT.

2.
ChemSusChem ; 13(7): 1785-1792, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-31944592

ABSTRACT

The development of mild and efficient processes for the selective oxygenation of organic compounds by molecular oxygen (O2 ) is key for the synthesis of oxygenates. This paper discloses an atom-efficient synthesis protocol for the photo-oxygenation of 9,10-dihydroanthracene (DHA) by O2 to anthraquinone (AQ), which could achieve quantitative AQ yield (100 %) without any extra catalysts or additives under ambient temperature and pressure. A yield of 86.4 % AQ was obtained even in an air atmosphere. Furthermore, this protocol showed good compatibility for the photo-oxidation of several other compounds with similar structures to DHA. From a series of control experiments, free-radical quenching, and electron paramagnetic resonance spin-trapping results, the photo-oxygenation of DHA was probably initiated by its photoexcited state DHA*, and the latter could activate O2 to a superoxide anion radical (O2 .- ) through the transfer of its electron. Subsequently, this photo-oxidation was gradually dominated by the oxygenated product AQ as an active photocatalyst obtained from the oxidation of DHA by O2 .- , and was accelerated with the rapid accumulation of AQ. The present photo-oxidation protocol is a good example of selective oxygenation based on the photoexcited substrate self-activated O2 , which complies well with green chemistry ideals.

SELECTION OF CITATIONS
SEARCH DETAIL
...