Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Oncol ; 2022: 3156968, 2022.
Article in English | MEDLINE | ID: mdl-35909901

ABSTRACT

Background: The treatment of cervical cancer in the late stage is still quite challenging, because of nonspecificity in conventional therapies and the lack of molecular targeted drugs. It is necessary to find novel biomarkers for cervical cancer treatment. Methods: In the present study, cervical cell lines HeLa and SiHa with kin17 knockdown were constructed by transfection of the recombinant lentiviral vector carrying KIN17 siRNA and screened by puromycin. The established cells with kin17 knockdown were determined by fluorescence observation and western blotting. Cell apoptosis and the mitochondrial membrane potential (MMP) were detected by flow cytometry. The activity of caspase 3 enzyme was tested by spectrophotometry. The expression profile of apoptosis-associated proteins was analyzed by western blotting. Finally, we used bioinformatics and proteomic data to analyze KIN-related genes in cervical cancer. Results: The results showed high fluorescent positive rates (>90%) and high gene silencing efficiency (>65%) in HeLa and SiHa cells transfected with gene silencing vectors. Moreover, kin17 deficiency decreased the MMP and increased the apoptosis rates in HeLa and SiHa cells, respectively. Furthermore, knockdown of kin17 enhanced the activity of caspase 3 enzyme, increased the expression of cleaved PARP and Bim, while decreasing the expression of Bcl-xL and phosphorylated BAD in HeLa and SiHa cells. Identification of KIN-related prognostic genes in cervical cancer revealed that a total of 5 genes (FZR1, IMPDH1, GPKOW, XPA, and DDX39A) were constructed for this risk score, and the results showed that CTLA4 expressions were negatively correlated with the risk score. Conclusion: Our findings demonstrated that kin17 knockdown facilitates apoptosis of cervical cancer cells by targeting caspase 3, PARP, and Bcl-2 family proteins. Besides, kin17 could regulate cancer cell apoptosis through the mitochondrial pathway and could be used as a novel therapeutic target for the regulation of cell apoptosis in cervical cancer.

3.
Cancer Manag Res ; 11: 6151-6162, 2019.
Article in English | MEDLINE | ID: mdl-31308751

ABSTRACT

Background: According to the statistics of WHO/IARC, cervical cancer (CC) has become the fourth malignant cancer of female worldwide and it is one of the main causes of death of women in developing countries. Purpose: Potential plasma and metabolic biomarkers for CC precancerous lesions and cervicitis were indicated by LC-MS techniques, and their underlying mechanisms and functions were analyzed. Methods: Plasma samples were selected from healthy people (control), low-grade squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), CC, and post-treatment patients. All polypeptide types and sequences were detected by LC-MS/MS and the results were normalized by using Pareto-scaling. Potential metabolic biomarkers were screened by applying MetaboAnalyst 4.0 software and XCMS software, and analysis of variance and enrichment analysis were performed. Metabolic pathway analysis and functional enrichment analysis were used to further investigate the significance and pathological mechanisms of potential biomarkers. Results: Compared with healthy people, 9 differentially expressed metabolites were screened, 4 of which were up-regulated and 5 were down-regulated. LSIL group screened 7 differentially expressed metabolites, 5 of which were up-regulated and 2 were down-regulated; CC group screened 12 differentially expressed metabolites were screened, of which 9 were up-regulated and 3 were down-regulated. Eight differentially expressed metabolites were screened in the IF group, of which 5 showed up-regulation and 3 showed down-regulation. In functional enrichment analysis, differential metabolism was found to be associated with addition and coagulation cascades. Among all potential biomarkers, 2-amino-3-methyl-1-butanol, L-carnitine, Asn Asn Gln Arg, Ala Cys Ser Trp, Soladulcidine, Ala Ile Gln Arg, 2-amino-3 -Methyl-1-butanol, L-carnitine, Asn Asn Gln Arg, Ala Cys Ser Trp, Soladulcidine, Ala Ile Gln Arg can be used as predictors of precancerous lesions at different stages of CC. Among all biomarkers, 6α-fluoro-11ß1,17-dihydroxypren-4-ene-3,20-dione has higher expression in the CC and HSIL groups and lower expression in the treatment group. Conclusion: By applying molecular markers to assess the progression of the disease, the accuracy and specificity of the diagnosis can be improved, which has certain prospects in clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...