Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(50): 59016-59024, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38061011

ABSTRACT

A variety of electrolyte additives were comprehensively evaluated to understand their relative capability in stabilizing lithium metal anode. Although the Li||Cu test is an effective test to rule out ineffective additives, a reliable assessment of individual additives cannot be obtained just by a single evaluation method. Therefore, various methods must be combined to truly assess the stabilization of a lithium anode. Moreover, it was also discovered that a significant depletion of electrolytes occurred during the end-of-life of the lithium batteries, which partially contributed to the sudden failure of the lithium batteries during cycling. However, the main culprit of the sudden failure was identified as the significant increase in the resistance of the lithium metal anode. When used as an additive, cyclic fluorinated carbonates are the most effective in stabilizing the lithium anode and improving the cycling performance of lithium batteries among all the common additives. Despite its cost-effectiveness, the additive in the conventional electrolyte approach provides insufficient protection for lithium metal due to the complete consumption of the additive materials, which is necessary to repair the solid-electrolyte interphase (SEI). Therefore, it is suggested that a larger ratio (>15 wt %) of the SEI former should be employed to achieve effective lithium stabilization.

2.
ACS Appl Mater Interfaces ; 15(22): 26710-26717, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37229576

ABSTRACT

The use of lithium peroxide (Li2O2) as a cost-effective low-weight prelithiation cathode additive was successfully demonstrated. Through a series of studies on the chemical stability of Li2O2 and the activation process of Li2O2 on the cathode, we revealed that Li2O2 is more compatible with conventional electrolyte and cathode laminate slurry than lithium oxide. Due to the significantly smaller size of commercial Li2O2, it can be used directly as a cathode additive. Moreover, the activation of Li2O2 on the cathode leads to the impedance growth of the cathode possibly resulting from the release of dioxygen and evacuation of Li2O2 inside the cathode. With the introduction of a new Li2O2 spread-coating technique on the cathode, the capacity loss was suppressed. Si||NMC full cells using Li2O2 spread-coated cathode demonstrated a highly promising activation rate of Li2O2 and significantly enhanced specific capacity and cycling stability compared to the uncoated full cells.

3.
ACS Appl Mater Interfaces ; 15(2): 2804-2811, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36607131

ABSTRACT

To guide the selection of a suitable fluorinated ether (FE) co-solvent for lithium metal batteries, it is crucial to understand the relationship between the organic structures of the FEs and the electrochemical performance of an FE-containing electrolyte. In this work, 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)ethane (FEE), 1,1,2,2-tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane (TTE), and 1,2-bis(1,1,2,2-tetrafluoroethoxy)ethane (OFDEE) were chosen as representative FE co-solvents because of their distinct structural properties. The structure-activity relationship between the FEs and the electrochemical performance of Li||LiNi0.6Mn0.2Co0.2O2 (Li||NMC622) cells was correlated and quantified by Fourier-transform infrared and multi-dimensional nuclear magnetic resonance techniques. Sand's model was also employed to assess the extent of lithium dendrite formation in the cells using various FE electrolytes. The cycling performance of Li||NMC622 cells using different FE co-solvents follows the order FEE > TTE > OFDEE. Since the direct measurement of Sand's time is difficult, we introduced relative Sand's time to probe the diffusion behavior of each electrolyte, and the results showed that the best performance was obtained in the electrolyte with the longest relative Sand's time. Moreover, the lithium metal cell using the electrolyte with FEE co-solvent showed similar capacity retention compared with the baseline electrolyte at room temperature, but it demonstrated significantly improved low-temperature performance. The results indicate that FEE is a promising co-solvent candidate for improving the low-temperature performance of lithium metal batteries because it possesses not only non-solvating behavior but also very low viscosity and non-flammability. The advanced electrolyte LiPF6-FEC-DMC-FEE enables very stable cycling of lithium metal batteries at various temperatures.

4.
ACS Appl Mater Interfaces ; 14(32): 36679-36687, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35930841

ABSTRACT

Phosphorus pentoxide (P2O5) is investigated as an acid scavenger to remove the acidic impurities in a commercial lithium hexafluorophosphate (LiPF6) carbonate electrolyte to improve the electrochemical properties of Li metal batteries. Nuclear magnetic resonance (NMR) measurements reveal the detailed reaction mechanisms of P2O5 with the LiPF6 electrolyte and its impurities, which removes hydrogen fluoride (HF) and difluorophosphoric acid (HPO2F2) and produces phosphorus oxyfluoride (POF3), OF2P-O-PF5- anions, and ethyl difluorophosphate (C2H5OPOF2) as new electrolyte species. The P2O5-modified LiPF6 electrolyte is chemically compatible with a Li metal anode and LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode, generating a POxFy-rich solid electrolyte interphase (SEI) that leads to highly reversible Li electrodeposition, while eliminating transition metal dissolution and cathode particle cracking. The excellent electrochemical properties of the P2O5-modified LiPF6 electrolytes are demonstrated on Li||NMC622 pouch cells with 0.4 Ah capacity, 50 µm Li anode, 3 mAh cm-2 NMC622 cathode, and 3 g Ah-1 electrolyte/capacity ratio. The pouch cells can be galvanostatically cycled at C/3 for 230 cycles with 87.7% retention.

6.
ACS Appl Mater Interfaces ; 13(22): 25879-25889, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34028245

ABSTRACT

A complementary electrolyte system with 0.8 M lithium bis(fluorosulfonylimide) (LiFSI) salt and 2 wt % lithium perchlorate (LiClO4) additive in fluoroethylene carbonate (FEC)/ethyl methyl carbonate (EMC) solution enables not only stable cycling of lithium metal batteries (LMBs) with practical loading (<30 µm lithium anode, cathode loading > 4 mAh/cm2) but also outstanding degradation stability toward the end of cycle life when compared to the conventional electrolyte. Although the use of LiFSI salt can increase the electrolyte conductivity and lengthen the cycle life of LMBs, the aged lithium anode morphology formed by the sacrificial decomposition of LiFSI is highly porous, leading to an abrupt cell capacity drop toward the end of cycling. Moreover, the inability to stop aluminum corrosion by the LiFSI-based electrolyte also causes cracking of the cathode tab during prolonged cycling. It is observed that a highly porous aged lithium consumed electrolyte at a higher rate, leading to the dry-out of electrolyte solvents. On the contrary, dense aged lithium anode morphology increased the localized current applied on the lithium, causing the formation of lithium dendrite. Thus, porosity control is the key to enhance battery performance. In this complementary system, LiClO4 was introduced as an advanced additive to not only improve the capacity retention rate but also mitigate the abrupt capacity drop toward the end of cycle life because LiClO4 acted as a pore astringent reducing the porosity of the aged lithium metal anode to the desired level. Moreover, the addition of LiClO4 can also suppress the Al corrosion, allowing stable high-voltage cycling of LMBs. The synergistic effect of combining LiFSI salt and a LiClO4 additive leads to an electrolyte system that can facilitate the application of high-energy LMBs with practical electrode loading.

7.
Angew Chem Int Ed Engl ; 59(41): 18229-18233, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32638459

ABSTRACT

Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium-metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium-metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid-electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be ≥1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs.

8.
Angew Chem Int Ed Engl ; 58(31): 10591-10595, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31087468

ABSTRACT

Hydrofluoroethers (HFEs) have been adopted widely as electrolyte cosolvents for battery systems because of their unique low solvating behavior. The electrolyte is currently utilized in lithium-ion, lithium-sulfur, lithium-air, and sodium-ion batteries. By evaluating the relative solvating power of different HFEs with distinct structural features, and considering the shuttle factor displayed by electrolytes that employ HFE cosolvents, we have established the quantitative structure-activity relationship between the organic structure and the electrochemical performance of the HFEs. Moreover, we have established the linear free-energy relationship between the structural properties of the electrolyte cosolvents and the polysulfide shuttle effect in lithium-sulfur batteries. These findings provide valuable mechanistic insight into the polysulfide shuttle effect in lithium-sulfur batteries, and are instructive when it comes to selecting the most suitable HFE electrolyte cosolvent for different battery systems.

9.
Angew Chem Int Ed Engl ; 57(37): 12033-12036, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30066987

ABSTRACT

Relative solvating power, that is, the ratio of the coordination ratios between a solvent and the reference solvent, was used to probe the quantitative structure-activity relationship of electrolyte solvents and the lithium polysulfide (LiPS) dissolution in lithium-sulfur batteries. Internally referenced diffusion-ordered nuclear magnetic resonance spectroscopy (IR-DOSY) was used to determine the diffusion coefficient and coordination ratio, from which the relative solvating power can be easily measured. The higher the relative solvating power of an ethereal solvent, the more severe will be the LiPS dissolution and the lower the coulombic efficiency of the lithium-sulfur battery. A linear relationship was established between the logarithm of relative solvating power of a solvent and the degree of LiPS dissolution, rendering relative solvating power an important parameter in choosing the electrolyte solvent for lithium-sulfur batteries.

10.
J Phys Chem Lett ; 9(13): 3714-3719, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29901395

ABSTRACT

A novel methodology is reported on the use of internally referenced diffusion-ordered spectroscopy (IR-DOSY) in divulging the solution structure of lithium-ion battery electrolytes. Toluene was utilized as the internal reference for 1H-DOSY analysis due to its exceptionally low donor number and reasonable solubility in various electrolytes. With the introduction of the internal reference, the solvent coordination ratio of different species in the electrolytes can be easily determined by 1H-DOSY or 7Li-DOSY. This new technique was applied to different carbonate electrolytes, and the results were consistent with a Fourier transform infrared (FTIR) analysis. Compared to conventional vibrational spectroscopy, this IR-DOSY technique avoids the complicated deconvolution of the spectrum and allows determination of the solvent coordination ratio of different species in electrolyte systems with two or more organic solvents.

11.
ACS Appl Mater Interfaces ; 9(36): 30686-30695, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28820572

ABSTRACT

A new class of electrolyte additives based on cyclic fluorinated phosphate esters was rationally designed and identified as being able to stabilize the surface of a LiNi0.5Mn0.3Co0.2O2 (NMC532) cathode when cycled at potentials higher than 4.6 V vs Li+/Li. Cyclic fluorinated phosphates were designed to incorporate functionalities of various existing additives to maximize their utilization. The synthesis and characterization of these new additives are described and their electrochemical performance in a NMC532/graphite cell cycled between 4.6 and 3.0 V are investigated. With 1.0 wt % 2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphospholane 2-oxide (TFEOP) in the conventional electrolyte the NMC532/graphite cell exhibited much improved capacity retention compared to that without any additive. The additive is believed to form a passivation layer on the surface of the cathode via a sacrificial polymerization reaction as evidenced by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonsance (NMR) analysis results. The rational pathway of a cathode-electrolyte-interface formation was proposed for this type of additive. Both experimental results and the mechanism hypothesis suggest the effectiveness of the additive stems from both the polymerizable cyclic ring and the electron-withdrawing fluorinated alkyl group in the phosphate molecular structure. The successful development of cyclic fluorinated phosphate additives demonstrated that this new functionality selection principle, by incorporating useful functionalities of various additives into one molecule, is an effective approach for the development of new additives.

12.
ACS Appl Mater Interfaces ; 8(18): 11450-8, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27090502

ABSTRACT

Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials.

13.
J Am Chem Soc ; 136(33): 11735-47, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25053148

ABSTRACT

Four different chiral diamino diethers synthesized from N-isopropyl valinol or N-isopropyl alaninol were lithiated with n-butyllithium in tetrahydrofuran or diethyl ether. Crystal structures of the dilithiated diamino diethers were determined by X-ray diffraction. Three dilithiated diamino diethers including (2S,2'S)-1,1'-(butane-1,4-diylbis(oxy))bis(N-isopropylpropan-2-amine) 7, (2S,2'S)-1,1'-(pentane-1,5-diylbis(oxy))bis(N-isopropylpropan-2-amine) 8, and (2S,2'S)-1,1'-(heptane-1,7-diylbis(oxy))bis(N-isopropyl-3-methylbutan-2-amine) 9 are dimers, whereas dilithiated (2S,2'S)-1,1'-(pentane-1,5-diylbis(oxy))bis(N-isopropyl-3-methylbutan-2-amine) 10 is a monomer. The lithium atoms in all crystal structures adopt a nonequivalent coordination protocol and exist in two different environments in which one of the lithium atoms is tetra-coordinated while the other one is tri-coordinated. The solution structures of the dilithiated diamino diethers are also characterized by a variety of NMR experiments including diffusion-ordered NMR spectroscopy (DOSY) with diffusion coefficient-formula (D-FW) weight correlation analyses and other one- and two-dimensional NMR techniques.

14.
J Am Chem Soc ; 136(8): 3246-55, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24451022

ABSTRACT

The solution structures of three mixed aggregates dissolved in toluene-d8 consisting of the lithiated amides derived from (S)-N-isopropyl-1-((triisopropylsilyl)oxy)propan-2-amine, (R)-N-(1-phenyl-2-((triisopropylsilyl)oxy)ethyl)propan-2-amine, or (S)-N-isobutyl-3-methyl-1-((triisopropylsilyl)oxy)butan-2-amine and n-butyllithium are characterized by various NMR experiments including diffusion-ordered NMR spectroscopy with diffusion coefficient-formula weight correlation analyses (D-FW) and other one- and two-dimensional NMR techniques. We report that steric hindrance of R1 and R2 groups of the chiral lithium amide controls the aggregation state of the mixed aggregates. With a less hindered R2 group, lithium (S)-N-isopropyl-1-((triisopropylsilyl)oxy)propan-2-amide forms mostly a 2:2 ladder-type mixed aggregate with n-butyllithium. Increase of steric hindrance of the R1 and R2 groups suppresses the formation of the 2:2 mixed aggregate and promotes formation of a 2:1 mixed aggregate. We observe that lithium (S)-N-isobutyl-3-methyl-1-((triisopropylsilyl)oxy)butan-2-amide forms both a 2:2 mixed aggregate and a 2:1 mixed trimer with n-butyllithium. Further increase in the steric hindrance of R1 and R2 groups results in the formation of only 2:1 mixed aggregate as observed with lithium (R)-N-(1-phenyl-2-((triisopropylsilyl)oxy)ethyl)propan-2-amide.

15.
J Org Chem ; 79(3): 1032-9, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24364386

ABSTRACT

Crystal structure determination of lithiated N-methylaniline with a variety of ligands, including tetrahydrofuran, methyltetrahydrofuran, trans-2,5-dimethyltetrahydrofuran, dimethoxyethane, tetrahydropyran and N,N-diethylpropionamide, reveals a common Li­N­Li­N four-membered-ring dimeric structure motif. A progression of solvation from tetrasolvated dimer (PhNMeLi·S2)2 through trisolvated dimer to disolvated dimer (PhNMeLi·S)2 was observed by increasing the steric hindrance of the ligand. Solid-state structures of several other lithium N-alkylanilides solvated by tetrahydrofuan are also reported. When the methyl group of N-methylaniline is replaced by an isopropyl or a phenyl group, trisolvated monomers are formed instead of dimers. Interestingly, the solid-state structure of lithiated N-isobutylaniline in tetrahydrofuran is a trisolvated dimer while that of lithium N-neopentylanilide is a disolvated dimer.

16.
J Org Chem ; 78(23): 11733-46, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24134615

ABSTRACT

We report the development of isotopic-labeled (13)C diffusion-ordered NMR spectroscopy (DOSY) NMR with diffusion coefficient-formula weight (D-FW) analysis and its application in characterizing the aggregation state of methyllithium aggregates and complexes with several widely used diamines. Commercially available (13)C-labeled benzene and several easily synthesized (13)C-labeled compounds using (13)C-labeled iodomethane as the isotopic source are developed as internal references for diffusion-formula weight analysis (D-FW). The technique greatly expands the applicability of DOSY D-FW analysis to a much wider variety of compounds because of isotopic labeling. These results reveal that methyllithium exists as a tetrasolvated tetramer in diethyl ether and exclusively as bis-solvated dimers with chelating diamines.

17.
J Am Chem Soc ; 135(38): 14367-79, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23980610

ABSTRACT

The crystal structure of a mixed aggregate containing lithiated (S)-N-ethyl-3-methyl-1-(triisopropylsilyloxy)butan-2-amine derived from (S)-valinol and cyclopentyllithium is determined by X-ray diffraction. The mixed aggregate adopts a ladder structure in the solid state. The ladder-type mixed aggregate is also the major species in a toluene-d8 solution containing an approximately 1:1 molar ratio of the lithiated chiral amide to cyclopentyllithium. A variety of NMR experiments including diffusion-ordered NMR spectroscopy (DOSY) with diffusion coefficient-formula (D-FW) weight correlation analyses and other one- and two-dimensional NMR techniques allowed us to characterize the complex in solution. Solution state structures of the mixed aggregates of n-butyl, sec-butyllithium, isopropyllithium with lithiated (S)-N-ethyl-3-methyl-1-(triisopropylsilyloxy)butan-2-amine are also reported. Identical dimeric, ladder-type, mixed aggregates are the major species at a stoichiometric ratio of 1:1 lithium chiral amide to alkyllithium in toluene-d8 solution for all of the different alkyllithium reagents.

18.
J Am Chem Soc ; 135(33): 12400-6, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23875807

ABSTRACT

The solid-state structures of unsolvated, hexameric cyclopentyllithium and tetrameric cyclopentyllithium tetrahydrofuran solvate were determined by single-crystal X-ray diffraction. Cyclopentyllithium easily crystallized in hydrocarbon solvents. Solution-state structural analyses of cyclopentyllithium and cyclopentyllithium-tetrahydrofuran complexes in toluene-d8 were also carried out by diffusion-ordered NMR spectroscopy with diffusion coefficient-formula weight correlation analyses and other one- and two-dimensional NMR techniques. The solution-state studies suggest that unsolvated cyclopentyllithium exists as hexamer and tetramer equilibrating with each other. Upon solvation with tetrahydrofuran, cyclopentyllithium exists mostly as a tetrahydrofuran tetrasolvated tetramer.

19.
J Org Chem ; 78(14): 7288-92, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23767993

ABSTRACT

The solid state structure of lithiated (S)-N(1),N(1)-bis(2-methoxyethyl)-N(2),3-dimethylbutane-1,2-diamine, which is a chiral amide base synthesized from (S)-valine was determined by single-crystal X-ray diffraction. The complex in solution state is also characterized by a variety of NMR experiments including diffusion-ordered NMR spectroscopy (DOSY) with diffusion coefficient-formula weight correlation analyses and other one- and two-dimensional NMR techniques by dissolving the crystal in toluene-d8. The crystallography and NMR results suggest that the chiral amide is dimeric in both solid and solution states.


Subject(s)
Diamines/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Solutions
20.
J Am Chem Soc ; 134(40): 16845-55, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22967289

ABSTRACT

The dynamics of the racemization and catalytic and stoichiometric dynamic resolution of 2-lithio-N-Boc-piperidine (7) have been investigated. The kinetic order in tetramethylethylenediamine (TMEDA) for both racemization and resolution of the title compound and the kinetic orders in two resolving ligands have been determined. The catalytic dynamic resolution is second order in TMEDA and 0.5 and 0.265 order in chiral ligands 8 and 10, respectively. The X-ray crystal structure of ligand 10 shows it to be an octamer. Dynamic NMR studies of the resolution process were carried out. Some of the requirements for a successful catalytic dynamic resolution by ligand exchange have been identified.


Subject(s)
Lithium/chemistry , Piperidines/chemistry , Catalysis , Crystallography, X-Ray , Ethylenediamines/chemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...