Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Small ; : e2311380, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721961

ABSTRACT

Wearable sweat sensor offers a promising means for noninvasive real-time health monitoring, but the efficient collection and accurate analysis of sweat remains challenging. One of the obstacles is to precisely modulate the surface wettability of the microfluidics to achieve efficient sweat collection. Here a facile initiated chemical vapor deposition (iCVD) method is presented to grow and pattern polymer nanocone arrays with distinct superwettability on polydimethylsiloxane microfluidics, which facilitate highly efficient sweat transportation and collection. The nanoarray is synthesized by manipulating monomer supersaturation during iCVD to induce controlled nucleation and preferential vertical growth of fluorinated polymer. Subsequent selective vapor deposition of a conformal hydrogel nanolayer results in superhydrophilic nanoarray floor and walls within the microchannel that provide a large capillary force and a superhydrophobic ceiling that drastically reduces flow friction, enabling rapid sweat transport along varied flow directions. A carbon/hydrogel/enzyme nanocomposite electrode is then fabricated by sequential deposition of highly porous carbon nanoparticles and hydrogel nanocoating to achieve sensitive and stable sweat detection. Further encapsulation of the assembled sweatsensing patch with superhydrophobic nanoarray imparts self-cleaning and water-proof capability. Finally, the sweat sensing patch demonstrates selective and sensitive glucose and lactate detection during the on-body test.

2.
Analyst ; 149(11): 3195-3203, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38651605

ABSTRACT

Extracellular vesicles (EVs) originating from cancer cells incorporate various critical biomolecules that can aid in early cancer diagnosis. However, the rapid analysis of these micro vesicles remains challenging due to their nano-scale size and overlapping dimensions, hindering sufficient capture in terms of quantity and purity. In this study, an acoustofluidic device was developed to enhance the yield of immune-captured EVs. The channel of the device was modified with degradable gelatin nanoparticles (∼220 nm) to increase the surface roughness, and subsequently treated with CD63 antibodies. The acoustic-induced streaming would prolong the rotation time of the EVs in the targeted continuous flow area, improving their aggregation towards the surrounding pillars and subsequent capture by the specific CD63 antibodies. Consequently, the capture efficiency of the device was improved when the signal was on, as evidenced by enhanced fluorescence intensity in the main channel. It is demonstrated that the acoustofluidic device could enhance the immune capture of EVs through acoustic mixing, showcasing great potential in the rapid and fast detection of EVs in liquid biopsy applications.


Subject(s)
Extracellular Vesicles , Gelatin , Nanoparticles , Tetraspanin 30 , Gelatin/chemistry , Extracellular Vesicles/chemistry , Extracellular Vesicles/immunology , Nanoparticles/chemistry , Humans , Tetraspanin 30/metabolism , Acoustics , Lab-On-A-Chip Devices
3.
ACS Appl Mater Interfaces ; 15(4): 5845-5855, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36652453

ABSTRACT

In the background of air pollution and regular COVID-19 prevention, personal protective masks are necessary for our daily life. However, protective masks with high PM0.3 filtration usually have poor air permeability and are mostly disposable, leading to a heavy burden on the environment. In this work, a reusable membrane based on piezoelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanofibers embedded with BaTiO3 nanoparticles (BTO NPs) was developed. The P(VDF-TrFE)/BTO composite nanofibers not only have enhanced piezoelectricity and surface polarity but also have reduced diameters that could be beneficial for electrostatic adhesion, pole-polar interactions, and mechanical sieving to increase the PM0.3 capture capacity. Moreover, the BTO NPs also improved the charge storage capacity of the composite membrane, which could further enhance the PM0.3 filtration efficiency after corona treatment. The piezoelectric mask based on P(VDF-TrFE)/BTO composite nanofibers has high filtration efficiencies of 96% for PM0.3 and 98% for bacteria, while the pressure drop was only 182 Pa, which is lower than the commercial N95 standard of 343.2 Pa. Furthermore, the piezoelectric mask has a long and stable filtration performance after 5 cycles of 75% alcohol disinfection, demonstrating that the P(VDF-TrFE)/BTO composite membrane has a potential application in personal protective masks with comfortable and reusable properties.

4.
Environ Sci Pollut Res Int ; 28(31): 42290-42299, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33797717

ABSTRACT

Microbiome plays an important role in evaluating soil quality for sustainable agriculture. However, the suitability of biological indicators in reclaimed farmland is less understood. Using high-throughput sequencing, we evaluated the soil microbial community of the newly created farmland (NF) after reclamation with two local high-yield farmlands (slope farmland (SF), check-dam farmland (CF)) on the Loess Plateau. Soil enzyme activities and the amount of culturable microorganism were also quantified to assess the soil quality. Results showed that the microbial diversity, cultural microorganism abundance, and soil enzyme activities indicated poor soil quality in NF. The dominant bacterial phyla were Proteobacteria, Bacteroidetes, Acidobacteria, and Cyanobacteria. The abundance of Acidobacteria was significantly lower in NF (13.31%) than in SF (27.25%) and CF (27.91%). Soil enzyme activities had a significant correlation with the abundance of culturable microorganism, Proteobacteria and Bacteroidetes, soil organic matter, total nitrogen, cation exchange capacity, and pH, suggesting that soil microbes have driven the formation of nutrition and further mediated crop growth. Therefore, the application of bacterial fertilizers could be a potential way to improve the soil quality of reclaimed farmland for crop growth.


Subject(s)
Soil Microbiology , Soil , Agriculture , China , Farms , Fertilizers/analysis , Nitrogen/analysis
5.
Chem Eng J ; 418: 129368, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33746567

ABSTRACT

The ongoing pandemic caused by the novel coronavirus has turned out to be one of the biggest threats to the world, and the increase of drug-resistant bacterial strains also threatens the human health. Hence, there is an urgent need to develop novel anti-infective materials with broad-spectrum anti-pathogenic activity. In the present study, a fluorinated polycationic coating was synthesized on a hydrophilic and negatively charged polyester textile via one-step initiated chemical vapor deposition of poly(dimethyl amino methyl styrene-co-1H,1H,2H,2H-perfluorodecyl acrylate) (P(DMAMS-co-PFDA), PDP). The surface characterization results of SEM, FTIR, and EDX demonstrated the successful synthesis of PDP coating. Contact angle analysis revealed that PDP coating endowed the polyester textile with the hydrophobicity against the attachment of different aqueous foulants such as blood, coffee, and milk, as well as the oleophobicity against paraffin oil. Zeta potential analysis demonstrated that the PDP coating enabled a transformation of negative charge to positive charge on the surface of polyester textile. The PDP coating exhibited excellent contact-killing activity against both gram-negative Escherichia coli and gram-positive methicillin-resistant Staphylococcus aureus, with the killing efficiency of approximate 99.9%. In addition, the antiviral capacity of PDP was determined by a green fluorescence protein (GFP) expression-based method using lentivirus-EGFP as a virus model. The PDP coating inactivated the negatively charged lentivirus-EGFP effectively. Moreover, the coating showed good biocompatibility toward mouse NIH 3T3 fibroblast cells. All the above properties demonstrated that PDP would be a promising anti-pathogenic polymeric coating with wide applications in medicine, hygiene, hospital, etc., to control the bacterial and viral transmission and infection.

6.
ACS Appl Mater Interfaces ; 13(8): 10553-10563, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33617220

ABSTRACT

Biofilm formation on indwelling medical devices is a major cause of hospital-acquired infections. Monofunctional antibacterial surfaces have been developed to resist the formation of biofilms by killing bacteria on contact, but the adsorption of killed bacterial cells and debris gradually undermines the function of these surfaces. Here, we report a facile approach to produce an antibacterial surface that can regenerate its function after contamination. The self-regenerating surface was achieved by sequential deposition of alternating antibacterial and biodegradable layers of coating using a solvent-free initiated chemical vapor deposition method. As the top antibacterial layer gradually loses its killing ability due to the accumulation of debris, the underlying biodegradable layer degrades, shedding off the top surface layers and exposing another fresh antibacterial surface. Urinary catheters coated with monofunctional and self-regenerating antibacterial coatings both showed more than 99% bacterial killing ability at the initial antibacterial test, but the monofunctional surface lost its killing ability after continued exposure to concentrated bacterial solution, whereas the self-regenerating surfaces regained strong bacterial killing ability after prolonged exposure. Employing poly(methacrylic anhydride) and its copolymers with varied composition as the degrading layer, the degradation kinetics can be well-tailored and the self-regeneration duration spanned from minutes to days. The designed self-regenerating antibacterial surfaces could provide an effective approach to resist biofilm formation and extend the service life of indwelling medical devices.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Coated Materials, Biocompatible/chemistry , Dimethylamines/pharmacology , Polymethacrylic Acids/chemistry , Polystyrenes/pharmacology , Anti-Bacterial Agents/chemistry , Dimethylamines/chemistry , Escherichia coli/drug effects , Escherichia coli/physiology , Microbial Sensitivity Tests , Polystyrenes/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Urinary Catheters/microbiology
7.
ACS Appl Mater Interfaces ; 12(16): 18978-18986, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32212671

ABSTRACT

We report initiated chemical vapor deposition of model-graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. The graded coating was constructed by a bottom layer consisting of bactericidal poly(dimethyl amino methyl styrene) and a surface layer consisting of both dimethyl amino methyl styrene (DMAMS) and hydrophilic vinyl pyrrolidone (VP) moieties. Fourier transform infrared spectra showed existence of both DMAMS and VP in the coating with DMAMS as the major component, while X-ray photoelectron spectroscopy analysis and water contact angle measurement revealed a VP-enriched coating surface. The resultant coating exhibited more than 99.9% killing rate against both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis despite the incorporation of VP on the surface. We believe that such bactericidal capability resulted because of its high surface zeta potential, which could be originated from the DMAMS units distributed both on the top surface and underneath. The graded coating achieved more than 85% bacterial fouling resistance than the pristine substrate, as well as improved biocompatibility, owing to the abundant surface lactam groups from the VP moiety. Furthermore, the graded coating maintained good bactericidal capability after multicycle challenges of bacterial solutions and was durable against continuous rigorous washing, suggesting potential applications in biomedical devices.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Gases/chemistry , Polymers/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Bacteria/drug effects , Cell Line , Cell Survival/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/toxicity , Equipment Reuse , Humans , Microbial Viability/drug effects
8.
ACS Appl Bio Mater ; 2(9): 3983-3991, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-35021331

ABSTRACT

Polymer grafting has been a powerful tool in the surface modification of biomaterials. Traditional solvent-based grafting, however, often requires laborious procedures taken under harsh conditions, which seriously hinders its practical applications. Here, we report a facile solvent-free graft-from method that is able to achieve a superior surface functionality as compared to most reported results from traditional solvent-based grafting. The grafting was proceeded by conformally coating a cross-linked polyvinylpyrrolidone (PVP) prime layer in the vacuum, immediately followed by in situ grafting of PVP homopolymer chains from the propagating sites on the coating surface. The resultant coating exhibited enriched surface pyrrolidone content compared to the single-layer cross-linked counterpart and a water contact angle of 22°, lower than most reported PVP-grafted surfaces. Medical catheters grafted with PVP achieved a more than 99.9% bacterial antifouling enhancement compared to the pristine catheter, and significantly improved biocompatibility during a 4 week in vivo test in mice. The achieved surface functionality is attributed to the synergistic effect from the functional groups distributed both on the grafted chains and on the cross-linked primer. The effectiveness and simplicity of the vapor grafting method thus suggest a promising surface modification route for biomaterials and beyond.

9.
Environ Sci Pollut Res Int ; 26(3): 2662-2670, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30478773

ABSTRACT

The Loess Plateau is the most severely degraded soil area worldwide and represents one of the lowest areas of soil productivity. To solve the conundrum between increasing populations and decreasing agricultural acreage, enhancing the quantity of cultivated land, gully land consolidation projects has been implemented. However, the new creation farmland soil is not enough to satisfy the demand of agricultural production. An incubation experiment was conducted to determine the effects of biochar on the new creation farmland soil. Five levels of amendments (0, 1%, 2%, 5%, and 10% (wt%) biochar soil) were used, and the soil columns remained in the laboratory for approximately 2 months. The results show that biochar proportion was a more important factor than incubation time across all soils tested. The soil moisture content and particle size clearly increased as the amendment level increased; however, the soil pH decreased gradually with incubation time and tended to slow soil salinization. These findings will have to be verified under field conditions.


Subject(s)
Agriculture/methods , Charcoal , Farms , Soil/chemistry
10.
Soft Matter ; 12(25): 5537-41, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27121600

ABSTRACT

The effect of chain rigidity on the mechanic properties of DNA hydrogels was studied. Counterintuitively, the hydrogel formed by mainly flexible chains exhibited better stability, stretchability, and much mechanical properties than the hydrogel containing only rigid chains. Calculations showed that the crosslinking ratio in the hydrogel formed by flexible chains was about twice that of the hydrogel formed by rigid chains under the same conditions. We attributed this to the ease of conformational adjustment of flexible chains. Incorporation of 25% rigid chains further improved the performance of DNA hydrogel by shrinking the pore size and tuning its distribution.


Subject(s)
DNA/chemistry , Hydrogels/chemistry
11.
Sci Rep ; 6: 22731, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26955887

ABSTRACT

Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-ß, which was able to form inter-molecular ß-sheet structures. Results showed that K-ß peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.


Subject(s)
Biological Products/pharmacokinetics , Carrier Proteins/chemistry , Carrier Proteins/pharmacokinetics , Lung/metabolism , RNA, Small Interfering/pharmacokinetics , Animals , Biological Products/toxicity , Carrier Proteins/genetics , Carrier Proteins/toxicity , Cell Line , Cell Survival/drug effects , Drug Carriers , Humans , Male , Mice, Inbred BALB C , Protein Conformation , Protein Conformation, beta-Strand , Protein Multimerization , RNA, Small Interfering/toxicity
12.
J Chem Phys ; 142(20): 204902, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26026460

ABSTRACT

Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar mass and the order of density of complexes observed from the three experimental systems are qualitatively in agreement with those predicted from the simulations.

13.
Huan Jing Ke Xue ; 36(1): 309-13, 2015 Jan.
Article in Chinese | MEDLINE | ID: mdl-25898680

ABSTRACT

Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment. The results were as follows: (1) In the single material treatment, lime worked best with the dosage of 2% compared to the control group. In the compound amendment treatments, 2% humus combined with 2% lime worked best, and the immobilization efficiency of Pb, Cu, Cd, Zn reached 98.49%, 99.40%, 95.86%, 99.21%, respectively. (2) The order of Capacity Values was lime > humus + lime > ammonium sulfate + lime > superphosphate > ammonium sulfate + superphosphate > humus + superphosphate > humus > superphosphate. (3) BCR sequential extraction procedure results indicated that 2% humus combined with 2% lime treatment were very effective in immobilizing heavy metals, better than 2% lime treatment alone. Besides, Cd was activated firstly by 2% humus treatment then it could be easily changed into the organic fraction and residual fraction after the subsequent addition of 2% lime.


Subject(s)
Environmental Restoration and Remediation/methods , Metals, Heavy/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Calcium Compounds , Oxides
14.
Phys Chem Chem Phys ; 17(14): 8653-9, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25735601

ABSTRACT

Polyelectrolyte complexes (PECs) are of great importance in drug delivery and gene therapy. The density and the distribution of the charges are key parameters of a polyelectrolyte, determining the structure of the complex and the kinetics of the complexation. Using peptides of precisely-controlled charge density as model molecules, we showed that the presence of weakly-charged peptides, (KGGG)5 or (KGKG)5, did not affect the complexation of highly-charged peptides (KKKK)5 with 21 bp oligonucleotides. However, peptide containing blocks of different charge densities, such as (KKKK)5-b-(KGGG)5 or (KKKK)5-b-(KGKG)5, exhibited superior performance during complexation. With a relatively uniform small size, the complex was also stable in serum. More importantly, the cellular uptake of the complex was greatly enhanced by a ratio of 40-60%, compared to that of the complex formed by uniformly-charged peptides. We attributed the improvement to the structure of the complex, in which the highly-charged blocks form the core with the oligonucleotide whilst the weakly-charged blocks dangle outside, preventing the complexes from further aggregation.


Subject(s)
Oligonucleotides/chemistry , Oligonucleotides/pharmacokinetics , Peptide Fragments/chemistry , Polymers/chemistry , Drug Delivery Systems , HEK293 Cells , Humans , Kinetics , Models, Molecular , Static Electricity , Tissue Distribution
15.
Langmuir ; 30(21): 6219-27, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24826785

ABSTRACT

Physically coating liposomes with peptides of desirable functions is an economic, versatile, and less time-consuming approach to prepare drug delivery vehicles. In this work, we designed three peptides-Ac-WWKKKGGNNN-NH2 (W2K3), Ac-WWRRRGGNNN-NH2(W2R3), Ac-WWGGGGGNNN-NH2(W2G3)-and studied their coating ability on negatively charged liposomes. It was found that the coating was mainly driven by the electrostatic interaction between the peptides' cationic side groups and the acidic lipids, which also mediated the "anchoring " of Trp residuals in the interfacial region of lipid bilayers. At the same conditions, the amount of the coated W2R3 was more than that of W2K3, but the stability of the liposome coated with W2R3 was deteriorated. This was caused by the delocalized charge of the guanidinium group of arginine. The coating of the peptide rendered the liposome pH-responsive behavior but did not prominently change the phase transition temperature. The liposome coated with peptides displayed appropriate pH/temperature dual responsive characteristics and was able to release the content in a controlled manner.


Subject(s)
Drug Delivery Systems , Liposomes/chemistry , Peptides/chemistry , Amino Acid Sequence , Arginine/chemistry , Cell Membrane/metabolism , DNA/chemistry , Fluoresceins/chemistry , Guanidine/chemistry , Hydrogen-Ion Concentration , Light , Lipid Bilayers/chemistry , Microscopy, Electron, Transmission , Molecular Sequence Data , Salts/chemistry , Scattering, Radiation , Static Electricity , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...