Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 29(4): 1188-1205, 2023 02.
Article in English | MEDLINE | ID: mdl-36408676

ABSTRACT

Global warming intensifies the hydrological cycle, which results in changes in precipitation regime (frequency and amount), and will likely have significant impacts on soil respiration (Rs ). Although the responses of Rs to changes in precipitation amount have been extensively studied, there is little consensus on how Rs will be affected by changes in precipitation frequency (PF) across the globe. Here, we synthesized the field observations from 296 published papers to quantify the effects of PF on Rs and its components using meta-analysis. Our results indicated that the effects of PF on Rs decreased with an increase in background mean annual precipitation. When the data were grouped by climate conditions, increased PF showed positive effects on Rs under the arid condition but not under the semi-humid or humid conditions, whereas decreased PF suppressed Rs across all the climate conditions. The positive effects of increased PF mainly resulted from the positive response of heterotrophic respiration under the arid condition while the negative effects of decreased PF were mainly attributed to the reductions in root biomass and respiration. Overall, our global synthesis provided for the first time a comprehensive analysis of the divergent effects of PF on Rs and its components across climate regions. This study also provided a framework for understanding and modeling responses of ecosystem carbon cycling to global precipitation change.


Subject(s)
Ecosystem , Soil , Heterotrophic Processes , Autotrophic Processes , Respiration , Carbon
2.
Sci Total Environ ; 821: 153251, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35051470

ABSTRACT

A massive rise in atmospheric nitrogen deposition (ND) has threatened ecosystem health through accelerating soil nitrogen (N) cycling rates. While soil microbes serve a crucial function in soil N transformation, it remains poorly understood on how excess ND affects microbial functional populations regulating soil N transformation in tropical forests. To address this gap, we conducted 13-year N (as NH4NO3) addition experiments in one N-rich tropical primary forest (PF) and two N-poor tropical reforested forests (rehabilitated and disturbed) in South China. Based on our data, 13-year N introduction markedly enhanced soil N2O generation in all forests, regardless of soil N status, but microbial functional groups showed divergent responses to excess N addition among the studied forests. In the PF, long-term N introduction markedly decreased presence of bacterial 16S rRNA gene, nitrifier (amoA) and denitrifier genes (nirK, nirS and nosZ) and bacteria/fungi ratio, which could be attributed to the decreases in soil pH, dissolved organic carbon to N ratio and understory plant richness. In the two reforested forests, however, long-term N introduction generally did neither alter soil properties nor the abundance of most microbial groups. We further found that the elevated N2O generation was related to the increased soil N availability and decreased nosZ abundance, and the PF has the highest N2O generation than the other two forests. Overall, our data indicates that the baseline soil N status may dominate response of microbial functional groups to ND in tropical forests, and N-rich forests are more responsive to excess N inputs, compared to those with low-N status. Forests with high soil N status can produce more N2O than those with low-N status. With the spread of elevated ND from temperate to tropical zones, tropical forests should merit more attention because ecosystem N saturation may be common and high N2O emission will occur.


Subject(s)
Nitrogen , Soil , Ecosystem , Forests , Nitrogen/analysis , RNA, Ribosomal, 16S , Soil/chemistry , Soil Microbiology
3.
J Environ Manage ; 295: 113142, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34186313

ABSTRACT

The impact of human activities on soil carbon (C) storage in tropical forests has aroused wide concern during the past decades, because these ecosystems play a key role in ameliorating global climate change. However, there remain uncertainties about how land-use history alters soil organic carbon (SOC) stability and storage in different forests. In this study, we measured the C content and mass distributions of soil aggregates, density fractions, mineral-bound C and microbial biomass C in the organic horizon, 0-10 cm and 10-20 cm soil layers in coniferous forest and evergreen broadleaf forest at Dinghushan Biosphere Reserve in tropical China. The broadleaf forest had larger SOC stocks than the coniferous forest, but the proportion of SOC stored in different density fractions at 0-10 cm soils was similar between forest types, while a greater proportion of SOC was stored in microaggregates in the coniferous forest. Most of the SOC was held as light fraction C in the organic horizon in the coniferous forest, whereas the concentrations of mineral-bound C were higher in the broadleaf forest. These findings indicate clear differences in the protection of SOC between broadleaf and coniferous forests growing on the same soil type. We propose that historic conversion of broadleaf forest to coniferous forest has reduced soil C sequestration capacity by altering the diversity and quality of plant inputs to the soil, which in turn affected macroaggregate formation, soil chemical properties and microbial biomass. Our results thus demonstrate that changes in forest tree species composition could have long-lasting effects on soil structure and carbon storage, providing crucial evidence for policy decisions on forest carbon sink management.


Subject(s)
Soil , Tracheophyta , Carbon/analysis , Carbon Sequestration , China , Ecosystem , Forests , Humans
4.
Sci Data ; 7(1): 323, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009397

ABSTRACT

Numerous ecosystem manipulative experiments have been conducted since 1970/80 s to elucidate responses of terrestrial carbon cycling to the changing atmospheric composition (CO2 enrichment and nitrogen deposition) and climate (warming and changing precipitation regimes), which is crucial for model projection and mitigation of future global change effects. Here, we extract data from 2,242 publications that report global change manipulative experiments and build a comprehensive global database with 5,213 pairs of samples for plant production (productivity, biomass, and litter mass) and ecosystem carbon exchange (gross and net ecosystem productivity as well as ecosystem and soil respiration). Information on climate characteristics and vegetation types of experimental sites as well as experimental facilities and manipulation magnitudes subjected to manipulative experiments are also included in this database. This global database can facilitate the estimation of response and sensitivity of key terrestrial carbon-cycling variables under future global change scenarios, and improve the robust projection of global change‒terrestrial carbon feedbacks imposed by Earth System Models.


Subject(s)
Carbon Cycle , Carbon/analysis , Ecosystem , Plants , Biomass , Climate , Earth, Planet , Soil
5.
Glob Chang Biol ; 26(10): 6015-6024, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32652817

ABSTRACT

Intensification of the Earth's hydrological cycle amplifies the interannual variability of precipitation, which will significantly impact the terrestrial carbon (C) cycle. However, it is still unknown whether previously observed relationship between soil respiration (Rs ) and precipitation remains applicable under extreme precipitation change. By analyzing the observations from a much larger dataset of field experiments (248 published papers including 151 grassland studies and 97 forest studies) across a wider range of precipitation manipulation than previous studies, we found that the relationship of Rs response with precipitation change was highly nonlinear or asymmetric, and differed significantly between grasslands and forests, between moderate and extreme precipitation changes. Response of Rs to precipitation change was negatively asymmetric (concave-down) in grasslands, and double-asymmetric in forests with a positive asymmetry (concave-up) under moderate precipitation changes and a negative asymmetry (concave-down) under extreme precipitation changes. In grasslands, the negative asymmetry in Rs response was attributed to the higher sensitivities of soil moisture, microbial and root activities to decreased precipitation (DPPT) than to increased precipitation (IPPT). In forests, the positive asymmetry was predominantly driven by the significant increase in microbial respiration under moderate IPPT, while the negative asymmetry was caused by the reductions in root biomass and respiration under extreme DPPT. The different asymmetric responses of Rs between grasslands and forests will greatly improve our ability to forecast the C cycle consequences of increased precipitation variability. Specifically, the negative asymmetry of Rs response under extreme precipitation change suggests that the soil C efflux will decrease across grasslands and forests under future precipitation regime with more wet and dry extremes.


Subject(s)
Grassland , Soil , Forests , Rain , Respiration
6.
Oecologia ; 193(3): 689-699, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32681295

ABSTRACT

The niche dimension hypothesis predicts that more species can coexist given a greater number of niche axes along which they partition the environment. Although this hypothesis has been broadly supported by nutrient enrichment experiments, its applicability to other ecological factors, such as natural enemies and abiotic stresses, has not been vigorously tested. Here, we examined the generality of the niche dimension hypothesis by experimentally manipulating both resource and non-resource niche dimensions-nitrogen limitation, pathogens and low-temperature stress-in a Tibetan alpine meadow. We found that decreases in niche dimensions led to a significant reduction in species richness, consistent with results from nutrient addition studies. However, different niche variables uniquely affected the plant communities. While nitrogen had largest effects on both community biomass and species richness, pathogens and low-temperature stress, in combination with nitrogen, had synergistic effects on them. Our results provide direct evidence demonstrating that both resource and non-resource niche dimensions can influence species coexistence. These findings suggest that other non-resource factors need to be taken into consideration to better predict the community assembly and control over biodiversity, particularly under the future multifaceted global change scenarios.


Subject(s)
Ecosystem , Soil , Biodiversity , Biomass , Plants
7.
Sci Total Environ ; 738: 139746, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32531591

ABSTRACT

Climate warming, altered precipitation and nitrogen deposition may critically affect plant growth and ecosystem carbon fluxes. However, the underlying mechanisms are not fully understood. We conducted a 2-yr, multi-factor experiment (warming (W), altered precipitation (+30% and - 30%) and nitrogen addition (N)) in a semi-arid grassland on the Loess Plateau to study how these factors affect ecosystem carbon fluxes. Surprisingly, no interactive effects of warming, altered precipitation and nitrogen addition were detected on parameters of ecosystem carbon fluxes, including net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), gross ecosystem productivity (GEP) and soil respiration (SR). Warming marginally reduced NEE and GEP mainly due to its negative effects on them in July and August. Altered precipitation significantly affected all parameters of carbon fluxes with precipitation reduction decreasing NEE, ER and GEP, whereas precipitation addition increasing SR. In contrast, nitrogen addition had little effect on any parameters of carbon fluxes. Soil moisture was the most important driver and positively correlated with ecosystem carbon fluxes and warming impacted ecosystem carbon fluxes indirectly by decreasing soil moisture. While plant community cover did not show significant association with carbon fluxes, semi-shrubs cover was positively related to NEE, ER and GEP. Together, these results suggest that soil water availability, rather than soil temperature and nitrogen availability, may dominate the effect of the future multi-faceted global changes on semi-arid grassland carbon fluxes on the Loess Plateau.

8.
Nat Ecol Evol ; 3(9): 1309-1320, 2019 09.
Article in English | MEDLINE | ID: mdl-31427733

ABSTRACT

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.


Subject(s)
Carbon Cycle , Ecosystem , Carbon , China , Europe
9.
Ecol Evol ; 9(13): 7628-7638, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31346427

ABSTRACT

Global warming and changes in precipitation patterns can critically influence the structure and productivity of terrestrial ecosystems. However, the underlying mechanisms are not fully understood. We conducted two independent but complementary experiments (one with warming and precipitation manipulation (+ or - 30%) and another with selective plant removal) in a semiarid grassland on the Loess Plateau, northwestern China, to assess how warming and altered precipitation affect plant community. Our results showed that warming and altered precipitation affected community aboveground net primary productivity (ANPP) through impacting soil moisture. Results of the removal experiment showed competitive relationships among dominant grasses, the dominant subshrub and nondominant species, which played a more important role than soil moisture in the response of plant community to warming and altered precipitation. Precipitation addition intensified the competition but primarily benefited the dominant subshrub. Warming and precipitation reduction enhanced water stresses but increased ANPP of the dominant subshrub and grasses, indicating that plant tolerance to drought critically meditated the community responses. These findings suggest that specie competitivity for water resources as well as tolerance to environmental stresses may dominate the responses of plant communities on the Loess Plateaus to future climate change factors.

10.
Sci Total Environ ; 625: 440-448, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29291558

ABSTRACT

Nitrogen and phosphorus are two important nutrient elements for plants. The current paradigm suggests that the scaling of plant tissue N to P is conserved across environments and plant taxa because these two elements are coupled and coordinately change with each other following a constant allometric trajectory. However, this assumption has not been vigorously examined, particularly in changing N and P environments. We propose that changes in relative availability of N and P in soil alter the N to P relationship in plants. Taking advantage of a 4-yr N and P addition experiment in a Tibetan alpine meadow, we examined changes in plant N and P concentrations of 14 common species. Our results showed that while the scaling of N to P under N additions was similar to the previously reported pattern with a uniform 2/3 slope of the regression between log N and log P, it was significantly different under P additions with a smaller slope. Also, graminoids had different responses from forbs. These results indicate that the relative availability of soil N and P is an important determinant regulating the N and P concentrations in plants. These findings suggest that alterations in the N to P relationships may not only alter plant photosynthate allocation to vegetative or reproductive organs, but also regulate the metabolic and growth rate of plant and promote shifts in plant community composition in a changing nutrient loading environment.

11.
Glob Chang Biol ; 23(1): 154-163, 2017 01.
Article in English | MEDLINE | ID: mdl-27275848

ABSTRACT

Daytime warming and nighttime warming have the potential to influence plant community structure and ecosystem functions. However, their impacts on ecological stability remain largely unexplored. We conducted an eight-year field experiment to compare the effects of daytime and nighttime warming on the temporal stability of a temperate steppe in northern China. Our results showed that the cover and stability of dominant species, stability of subordinate species, and compensatory dynamics among species strongly influenced community-level stability. However, daytime, but not nighttime, warming significantly reduced community temporal stability mainly through the reduction in the abundance of dominant, stable species. These findings demonstrate the differential effects of daytime and nighttime warming on community stability and emphasize the importance of understanding the changes of dominant species for accurately predicting community dynamics under climate warming.


Subject(s)
Climate Change , Ecosystem , China , Climate , Plants , Time Factors
12.
Sci Rep ; 6: 23267, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26987482

ABSTRACT

Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature.


Subject(s)
Carbon/analysis , Poaceae/physiology , Adaptation, Physiological , Biodiversity , China , Climate Change , Droughts , Grassland , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...