Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 887921, 2022.
Article in English | MEDLINE | ID: mdl-35677656

ABSTRACT

Lactococcus garvieae is an important pathogen of fish, associated with high rates of mortality and infection recurrence in summer or stressful conditions. Chronic infection and disease recurrence have also been reported to be associated with biofilms. However, the impact of biofilm and planktonic bacterial infection on fish immune responses remains unclear. In this study, de novo sequencing was used to compare differences of the spleen transcriptome in planktonic- and biofilm-infected mullets. Among the 181,024 unigenes obtained, 3,392 unigenes were associated with immune response genes. Comparative analysis of the gene expression between infection with the L. garvieae planktonic type and biofilm type identified a total of 3,120 and 3,489 differentially expressed genes in response to planktonic and biofilm infection, respectively, of which 1,366 and 1,458 genes were upregulated, and 1,754 and 1,458 genes were downregulated, respectively. Gene ontology enrichment analysis of immune genes identified genes involved in the complement system, toll-like receptor signaling, and antigen processing, which were further verified by qPCR. Additionally, genes encoding TLR2, IL-1ß, TNF-α, C7, and MHC class II peptides were downregulated in response to biofilm infection. Importantly, the results show that biofilm infection induces a different immune pathway response compared with planktonic bacterial infection and, furthermore, illustrates that the prevention of biofilm formation may be a necessary and new strategy for controlling bacterial infection in aquaculture.


Subject(s)
Bacterial Infections , Fish Diseases , Smegmamorpha , Animals , Biofilms , Fish Diseases/microbiology , Immunity, Innate , Lactococcus , Plankton/genetics , Smegmamorpha/genetics , Transcriptome
2.
Vaccines (Basel) ; 10(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35214666

ABSTRACT

Photobacterium damselae subsp. damselae is a pathogen that mainly infects a variety of fish species. There are many antibiotic-resistant strains of Photobacterium damselae subsp. damselae. In a previously published article, we described the production method for a novel oral biofilm vaccine. In the study reported herein, we confirmed the protective effect of the oral biofilm vaccine against Photobacterium damselae subsp. damselae. Twenty-eight days after vaccination, phagocytosis increased by 256% relative to the control group. The mean albumin-globulin ratios of the vaccine groups were significantly lower than the mean albumin-globulin ratios of the control group. There were no significant intergroup differences in lysozyme activity. Mean IgM titers were significantly higher in the vaccine group than in the control group. There was a significant upregulation of the TLR 3, IL-1ß, and IL-8 genes in the spleen 28 days after vaccination. The cumulative mortality of the control fish was 84% after challenging fish with the Photobacterium damselae subsp. damselae, while the cumulative mortality of the oral biofilm vaccine (PBV) group was 32%, which was significantly higher than those of the whole-cell vaccine (PWV) and chitosan particle (CP) groups. There is minimal published research on the prevention and treatment of Photobacterium damselae subsp. damselae infection; therefore, this oral biofilm vaccine may represent a new method to fill this gap.

3.
Vaccines (Basel) ; 9(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34451969

ABSTRACT

Lactococcus garvieae (L. garvieae) is an important pathogen that causes enormous economic losses in both marine and freshwater aquaculture. At present, antibiotics are the only option for farmers to reduce the losses caused by L. garvieae. However, the usage of antibiotics leads to environmental pollution and the production of drug-resistant strains of bacteria. Therefore, vaccination is preferred as an alternative method to prevent infectious diseases. In this study, we describe an effective approach to the production of an oral biofilm vaccine, using bacteria grown on chitosan particles to form biofilms, and thus providing an inactive pathogen that enhances the immune response in fish. We observed the formation of a biofilm on chitosan particles and administered the novel oral biofilm vaccine to fish. We analyzed the immune responses, including antibody production, phagocytic ability, albumin/globulin ratio and immune-related genes, of vaccinated and control groups of black mullet. Our results show that the phagocytic ability of the biofilm vaccine group was 84%, which is significantly higher than that of the control group, and the antibody production in this group was significantly higher compared with the other group. The mRNA expression levels of immune-related genes (TLR2, IL-1ß, TNF-α) were significantly upregulated in the spleen after vaccination. In challenge experiments, the relative percent survival (RPS) was 77% in the biofilm vaccine group, 18% in the whole-cell vaccine group, and 0% in the chitosan particle group at 32 days post-vaccination. In addition, we also found that the relative percent survival (RPS) at 1 day post-vaccination was 74% in the biofilm vaccine group, 42% in the whole-cell vaccine group, and 26% in the chitosan particle group. In both long-term and short-term challenge experiments, the viability of the biofilm vaccine group was significantly higher than that of the whole-cell, chitosan particle and PBS groups. We conclude that based on its protective effect, the L. garvieae biofilm vaccine is better than the whole-cell vaccine when challenged several weeks after vaccination. In addition, the biofilm vaccine also has a greater protective effect than the whole-cell vaccine when challenged immediately after vaccination. Therefore, the biofilm vaccine might represent a novel method for the prevention and treatment of L. garvieae infection.

4.
Infect Genet Evol ; 67: 234-243, 2019 01.
Article in English | MEDLINE | ID: mdl-30395999

ABSTRACT

Streptococcus agalactiae infects numerous fish species, causing considerable economic losses during fish cultivation. This study compared the phenotypic differences among S. agalactiae hemolytic variant isolates and investigated the genetic composition of their hemolysin genes. Hemolysin is encoded by the cyl operon and mainly regulated by covS/R, which also regulates encapsulation. In total, 45 S. agalactiae clinical isolates were collected from cultured fishes in Taiwan. Three different hemolytic phenotypes-α, ß, and γ-were identified. Of the 45 isolates, 39 were ß hemolytic, 3 were α hemolytic, and 3 were γ hemolytic. The γ-hemolytic isolates demonstrated significantly thicker encapsulation and slower growth rates than did the α- and ß-hemolytic isolates. However, no isolate had mutations in the regulatory gene covS/R. A 1252-bp insertion sequence (IS) in the cyl operon of α-hemolytic isolates, located at cylF region, was found. This IS interrupted cylF through insertion at 23 bp downstream of starting codon, causing incomplete mRNA transcription. The ß-hemolytic isolates showed no mutation in the cyl operon. By contrast, the γ-hemolytic isolates had lost the entire cyl operon; it had been replaced by a 14-kb genomic island containing genes for DNA recombinase and septum formation proteins. In summary, the differences in hemolysin genes between α- and ß-hemolytic isolates were due to the IS in the cylF region, whereas in the γ-hemolytic isolates, the entire cyl operon was deleted and replaced. These findings explain different hemolysin expressions of the clinical S. agalactiae isolates taken from fish ponds in Taiwan. IMPORTANCE: Streptococcus agalactiae infects both warm- and cold-blooded animals and causes major aquatic cultivation loss. Pathogenic isolates from the outbreak of fish ponds were examined their cyl operon gene. α-Hemolytic isolate with mutant cyl operon was observed for the first time in aquaculture animals and was compared to intact or entire cyl operon deletion of ß- and γ-hemolytic isolates. Hemolysis expression levels of Streptococcus agalactiae are explained.


Subject(s)
Gene Expression Regulation, Bacterial , Mutation , Operon , Phenotype , Streptococcal Infections/microbiology , Streptococcus agalactiae/physiology , Amino Acid Sequence , Bacterial Capsules , Base Sequence , Genes, Bacterial , Genome, Bacterial , Genomics/methods , Hemolysis , Sequence Analysis, DNA , Streptococcus agalactiae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...