Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Appl ; 35(2): 264-273, 2020 08.
Article in English | MEDLINE | ID: mdl-32366157

ABSTRACT

With good contrast in T1 and T2 weighted imaging as well as low toxicity in 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, this work proposes the cross-linked polydimethylsiloxane colloids as a novel non-ionic contrast agent for gastrointestinal magnetic resonance imaging. The experiments of nuclear magnetic resonance spectra and relaxation show that within the interface of the colloids, there are nuclear Overhauser effect and transient nuclear Overhauser effect (cross-relaxation). Regarding the longitudinal relaxation experiments of CH2CH2O segments of Tween 80, a two spins system is found and modeled well by the equation IZ-I0= S0((1-X) e-tD1 -(1+X) e-tT1) which is deduced based on the transient nuclear Overhauser effect proposed by Solomon. The arbitrary constant X is additionally added with the initial conditions (Iz - I0)t=0 = -2XS0 and (Sz - S0)t=0 = -2S0. For the two spins system, D1 and T1 are corresponding to longitudinal relaxation times of the bound water and the CH2CH2O respectively. Concerning the transverse relaxation experiments of the CH2CH2O, they agree with the equation with three exponential decays, defined by three relaxation times, likely corresponding to three mechanisms. These mechanisms possibly are intramolecular and intermolecular dipole-dipole (DD) interactions and scalar coupling. Within the interface, hydrogen bonding causes the positive nuclear Overhauser effect of the CH2CH2O's nuclear magnetic resonance spectra, the transient nuclear Overhauser effect of the CH2CH2O's longitudinal relaxation experiments and the intermolecular dipole-dipole interactions of the CH2CH2O's transverse relaxation experiments.


Subject(s)
Colloids/analysis , Contrast Media/analysis , Dimethylpolysiloxanes/analysis , Gastrointestinal Tract/diagnostic imaging , Magnetic Resonance Imaging/methods , 3T3 Cells , Animals , Cross-Linking Reagents/analysis , Mice , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...