Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 79(12): 369, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253498

ABSTRACT

Kosakonia radicincitans GXGL-4A, a gram-negative nitrogen-fixing (NF) bacterial strain is coated with a thick capsulatus on the surface of cell wall, which becomes a physical barrier for exogenous DNA to enter the cell, so the operation of genetic transformation is difficult. In this study, an optimized Tn5 transposon mutagenesis system was established by using a high osmotic HO-1 medium combined with the electroporation transformation. Eventually, a mutant library containing a total of 1633 Tn5 insertional mutants were established. Of these mutants, the mutants M81 and M107 were found to have an enhanced capability to synthesize siderophore through the CAS agar plate assay and the spectrophotometric determination. The bacterial cells of two mutants were applied in cucumber growth-promoting experiment. Cucumber seedlings treated with M81 and M107 cells had a significant increase in biomass including seedling height, seedling fresh weight, root fresh weight, and root length. The whole genome sequencing of the mutants M81 and M107 showed that the integration sites of Tn5 transposon element were located in MmyB-like helix-turn-helix transcription regulator (locus tag: A3780_19720, trX) and aminomethyltransferase-encoding genes (locus tag: A3780_01680, amt) in the genome of GXGL-4A, respectively. The ability of siderophore synthesis of the target mutants was improved by Tn5 insertion mutagenesis, and the mutants obtained showed a good plant growth-promoting effect when applied to the cucumber seedlings. The results suggest that the identified functional genes regulates the biosynthesis of siderophore in azotobacter GXGL-4A, and the specific mechanism needs to be further investigated.


Subject(s)
Cucumis sativus , Siderophores , Agar , Aminomethyltransferase , DNA Transposable Elements , Mutagenesis, Insertional , Nitrogen , Transcription Factors
2.
Curr Microbiol ; 77(8): 1848-1857, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32170407

ABSTRACT

Kosakonia radicincitans GXGL-4A, a free-living nitrogen-fixing (NF) bacterial strain isolated from maize (Zea mays L.) roots was found to have ability to degrade aromatic hydrocarbons. In this study, we describe the main morphological characteristics of bacterium, aromatic hydrocarbon-degrading capability, and the complete genome of K. radicincitans GXGL-4A. The genome is consisted of only one 5,687,681 bp linear chromosome with a G + C content of 53.96%. The strain has two genetically distinct nitrogenase systems, one based on molybdenum (Mo) similar to nitrogenase isolated from a wide range of nitrogen-fixing organisms, and the other contains iron (Fe). The differences in transcriptional level of several important nitrogen fixation (nif) genes between LB (nitrogen-rich, NR) and A15 nitrogen-free (nitrogen-limited, NL) culture conditions were detected using Real-time Quantitative Reverse Transcription PCR (qRT-PCR). The bacterial cells of GXGL-4A can grow well in LB liquid medium containing 1% toluene, ethylbenzene or xylene, suggesting a good resistance to the tested aromatic hydrocarbons. The results of GC-MS analysis showed that K. radicincitans GXGL-4A has a good capability to degrade toluene, ethylbenzene, and xylene (TEX). Completion of the genome sequencing will no doubt contribute to the deep exploration and comprehensive utilization of this NF bacterium in sustainable agriculture and bioremediation of aromatic pollutants.


Subject(s)
Enterobacteriaceae/genetics , Enterobacteriaceae/metabolism , Genome, Bacterial , Hydrocarbons, Aromatic/metabolism , Nitrogen Fixation , Base Composition , Benzene Derivatives/metabolism , Biodegradation, Environmental , China , Culture Media/chemistry , Nitrogenase/metabolism , Plant Roots/microbiology , Sequence Analysis, DNA , Toluene/metabolism , Whole Genome Sequencing , Xylenes/metabolism , Zea mays/microbiology
3.
Folia Microbiol (Praha) ; 65(3): 591-603, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31898151

ABSTRACT

The effects of the short-term application of Ascophyllum nodosum-fermented seaweed fertilizer on the bacterial community, soil nitrogen contents, and plant growth in maize rhizosphere soil were evaluated. The changes in the bacterial community composition and nitrogen contents including those of total nitrogen (TN), nitrate nitrogen (NO3--N) and ammonium nitrogen (NH4+-N) in rhizosphere soils in response to treatment with seaweed fertilizer were determined. Furthermore, soil enzymatic activity and crop biomass were analyzed. The relative abundance of the dominant phyla varied regularly with fertilization, and bacterial α-diversity was apparently influenced by seaweed fertilizer amendment. The TN contents of all soil samples decreased gradually, and the NO3--N and NH4+-N contents of the soils treated with seaweed fertilizer were much higher than those of the control soils. Similarly, the enzymatic activities of dehydrogenase, nitrite reductase, urease, and cellulase in the soil were significantly increased on day 3, day 8, and day 13 after the application of seaweed fertilizer to the maize rhizosphere soil. However, there was no difference in the activity of soil sucrase between the treatment group and the control group. In this study, the growth of maize seedlings was confirmed to be greatly promoted by the utilization of seaweed fertilizer. These results deepen our understanding of plant-microbe interactions in agroecosystems and should benefit the wide use of seaweed fertilizer in sustainable agricultural production.


Subject(s)
Fertilizers/analysis , Microbiota , Nitrogen/analysis , Rhizosphere , Seaweed/chemistry , Soil/chemistry , Zea mays/growth & development , Agriculture/methods , Ascophyllum/chemistry , Bacteria/classification , Biomass , Phylogeny , Plant Development , Soil Microbiology , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...