Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(4): 1040-1048, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-35981360

ABSTRACT

OBJECTIVE: To investigate the function of RAS protein on the progression of the T-ALL cell lines in vitro. METHODS: The DNA of the T-ALL cells was purified then amplified the coding regions of three RAS genes (KRAS, NRAS, HRAS) by PCR reaction. After T-A cloning, the coding regions of KRAS, NRAS and HRAS were sequenced by Sanger Sequencing. The siRNA oligonucleotides were cloned into the pSEH-361 vector, which were then packaged into retroviral together with pAMPHO and pVSVG in the HEK-293T cells. The T-ALL cells were infected with the retrovirus. The gene expressions were detected by qRT-PCR and Western blot. The T-ALL cells were stained with Annexin V-PE/7-AAD and the apoptotic cells were detected by flow cytometry. The T-ALL cells were stained with Hoechst 33258, and the cell cycle distribution was determined by flow cytometry. The expression of cleaved-Caspase 3 was stained with antibody and observed with fluorescence microscope. RESULTS: For RAS genes, beside the Loucy and the P12-ICH cells harbored KRAS c.6187G>A (p.KRASG12D) homozygous mutant, no missense mutation of RAS was found in other T-ALL cells genome. The pan RAS inhibitor compound 3144 showed toxicity to all tested T-ALL cells, except PEER (IC50=47.916 µmol/L). Similarly, Tipifarnib induced apoptosis of multiple T-ALL cell lines except for the PEER cells (IC50=94.2265 µmol/L). After KRAS knock-down, the T-ALL cells showed significant apoptosis and an arrested cell cycle. CONCLUSION: The KRAS protein is vital for the progression of the T-ALL cells in vitro, it is a potential therapeutic target for T-ALL patients.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins p21(ras) , Apoptosis , Cell Line , Cell Proliferation , Humans , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(3): 897-907, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35680824

ABSTRACT

OBJECTIVE: To establish the technique that take the advantages of flow cytometry combined fluorescence in situ hybridization (Flow-FISH) to identify the Epstein-Barr virus(EBV) infected lymphocyte subtypies in patients' peripheral blood sample. METHODS: Peripheral Blood monocyte from 9 patients with EBV infection enrolled at Children's Hospital in Chongqing Medical University were isolated by Ficoll-paque centrifugal separation. The expressions of EBER1, EBER2 in cell were detected by qRT-PCR. The surface markers of cell were detected by Flow cytometry after staining with their antibodies. The cell was treated Fix-Permeabilization Buffer before hybridization with fluorescent labeled probe at 37 ℃ overnight. The cell status, surface markers and targeted mRNA are detected by flow cytometry and fluorescence microscope. RESULTS: It was optimized that the Fix-Permeabilization Buffer and recipe with 0.2% Tween-20 were picked out as providing a good cell integrity and high resolution of surface markers. Hybridization with 20% formamide and 7% dextran sulfate at 37 ℃ overnight is the optimal hybridization condition as a good hybridization effect, a detectable cell integrity and a high resolution of cell markers under flow cytometry detection. Finally, upon the established Flow-FISH method, lymphocyte subpopulations of the EBV+ cells from cell lines and blood samples of patients were identified successfully. CONCLUSION: A Flow-FISH technology is established, which can be applied in the identification of EBV infected cell subtypes. This research provides a foundmental for its application in clinical test in EBV+ related proliferative diseases.


Subject(s)
Epstein-Barr Virus Infections , Flow Cytometry/methods , Herpesvirus 4, Human , Humans , In Situ Hybridization, Fluorescence/methods , Lymphocyte Subsets
3.
Infect Drug Resist ; 13: 1365-1375, 2020.
Article in English | MEDLINE | ID: mdl-32494168

ABSTRACT

PURPOSE: The aim of this study was to identify the subtype, characterize the antimicrobial resistance, determine the virulence gene distribution, and analyze the biofilm production of Staphylococcus aureus isolates from bovine mastitis milk samples in the Liaoning Province of China. MATERIALS AND METHODS: In total, 56 Staph. aureus isolates were collected and identified in this study; the isolates were divided into different spa types based on the sequence of the polymorphic X region of the spa gene. Additionally, antimicrobial susceptibility was investigated using the broth microdilution method, and 18 virulence genes were detected using PCR. Biofilm formation was measured by spectrophotometry with crystal violet staining and observed using confocal laser scanning microscopy. RESULTS: There were 12.12% (56/462) milk samples that were positive for Staph. aureus. These isolates were nonsusceptible to sulfamethoxazole (100%), penicillin (76.9%), daptomycin (76.79%), clindamycin (69.64%), and oxacillin (60.71%); however, the majority of the isolates (80.4%) were susceptible to amoxicillin/clavulanate. The predominant virulence genes encoded the cytotoxins, hla (94.64%) and hlb (89.29%), and the adhesion factors clfA (89.29%), clfB (89.29%), and fnbB (80.36%). Comparatively, virulence genes related to other adhesion factors such as cna (8.93%) and enterotoxins, such as seg (26.79%), sea (16.07%), seb (7.14%), and sec (7.14%) were detected at relatively lower rates. The following eight spa types were identified: t267 (35.84%), t730 (22.64%), t518 (15.09%), t1190 (11.32%), t1456 (9.43%), t224 (1.88%), t9129 (1.88%), and t177 (1.88%). The highest biofilm production was observed for t267. Staph. aureus exhibited various patterns of biofilm formation, with the biofilm often being associated with a tower-shaped structure or a thicker biofilm. CONCLUSION: Our results indicated that Staph. aureus isolates from dairy cows with mastitis in the Liaoning Province of China were non-susceptible to sulfamethoxazole, penicillin, daptomycin, oxacillin, and clindamycin. Additionally, the most prevalent subtype was t267, which displayed resistance to multiple antimicrobial agents and harbored several virulence genes, including clfA, clfB, fnbB, hla, and hlb.

SELECTION OF CITATIONS
SEARCH DETAIL
...