Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Neuroreport ; 35(6): 366-373, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38526949

ABSTRACT

Language dysfunction is common in Parkinson's disease (PD) patients, among which, the decline of semantic fluency is usually observed. This study aims to explore the relationship between white matter (WM) alterations and semantic fluency changes in PD patients. 127 PD patients from the Parkinson's Progression Markers Initiative cohort who received diffusion tensor imaging scanning, clinical assessment and semantic fluency test (SFT) were included. Tract-based special statistics, automated fiber quantification, graph-theoretical and network-based analyses were performed to analyze the correlation between WM structural changes, brain network features and semantic fluency in PD patients. Fractional anisotropy of corpus callosum, anterior thalamic radiation, inferior front-occipital fasciculus, and uncinate fasciculus, were positively correlated with SFT scores, while a negative correlation was identified between radial diffusion of the corpus callosum, inferior longitudinal fasciculus, and SFT scores. Automatic fiber quantification identified similar alterations with more details in these WM tracts. Brain network analysis positively correlated SFT scores with nodal efficiency of cerebellar lobule VIII, and nodal local efficiency of cerebellar lobule X. WM integrity and myelin integrity in the corpus callosum and several other language-related WM tracts may influence the semantic function in PD patients. Damage to the cerebellum lobule VIII and lobule X may also be involved in semantic dysfunction in PD patients.


Subject(s)
Parkinson Disease , White Matter , Humans , Diffusion Tensor Imaging/methods , Corpus Callosum/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Cross-Sectional Studies , Semantics , Brain/diagnostic imaging , White Matter/diagnostic imaging , Cerebellum , Anisotropy
2.
Colloids Surf B Biointerfaces ; 234: 113757, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241895

ABSTRACT

Biocompatible carbon quantum dots (CQDs) containing anti-osteosarcoma elements are intriguing therapeutics promising for bioimaging and tumor therapy. However, how the anti-osteosarcoma element doped in the structure of such CQDs triggers tumor inhibition remains unclear. Here, selenium-doped CQDs (Se-CQDs) are developed via a one-step hydrothermal route using discarded orange peel as a carbon source and structurally characterized by various physicochemical techniques. The biocompatibility and anti-osteosarcoma efficacy are deeply evaluated using animal and cell models. The resulting spherical Se-CQDs, with a 3-7 nm diameter, possess green-yellow tunable luminescence and excellent biocompatibility. Cell experiments show that Se-CQDs can be up-taken by osteosarcoma U2OS cells and activate the mitochondrial apoptosis pathway triggered by increased reactive oxygen species. They can arrest the cell cycle at the G2/S phase and promote cellular apoptosis with reduced invasion and migration. Molecularly, Se-CQDs can down-regulate the expression of DNMT1 while up-regulating the expression of PTEN due to the decreased promoter methylation. Notably, Se-incorporated CQDs are more effective in inhibiting the proliferation, migration, and invasion of osteosarcoma than Se-free CQDs. It is feasible to use Se-CQDs as candidates for the potential application of early monitoring and treatment of osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Quantum Dots , Animals , Quantum Dots/chemistry , Carbon/chemistry , Apoptosis/genetics , Osteosarcoma/pathology , Methylation , Bone Neoplasms/genetics
3.
J Colloid Interface Sci ; 652(Pt B): 1631-1644, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37666195

ABSTRACT

Composite materials that combine magnetic and dielectric losses offer a potential solution to enhance impedance match and significantly improve microwave absorption. In this study, Co3O4/ZnCo2O4 and ZnCo2O4/ZnO with varying metal oxide compositions are successfully synthesized, which are achieved by modifying the ratios of Co2+ and Zn2+ ions in the CoZn bimetallic metal-organic framework (MOF) precursor, followed by a high-temperature oxidative calcination process. Subsequently, a layer of polypyrrole (PPy) is coated onto the composite surfaces, resulting in the formation of core-shell structures known as Co3O4/ZnCo2O4@PPy (CZCP) and ZnCo2O4/ZnO@PPy (ZCZP) composites. The proposed method allows for rapid adjustments to the metal oxide composition within the inner shell, enabling the creation of composites with varying degrees of magnetic losses. The inclusion of PPy in the outer shell serves to enhance the bonding strength of the entire composite structure while contributing to conductive and dielectric losses. In specific experimental conditions, when the loading is set at 50 wt%, the CZCP composite exhibits an effective absorption bandwidth (EAB) of 5.58 GHz (12.42 GHz-18 GHz) at a thickness of 1.53 mm. Meanwhile, the ZCZP composite demonstrates an impressive minimum reflection loss (RLmin) of -71.2 dB at 13.04 GHz, with a thickness of 1.84 mm. This study offers a synthesis strategy for designing absorbent composites that possess light weight and excellent absorptive properties, thereby contributing to the advancement of electromagnetic wave absorbing materials.

4.
Curr Microbiol ; 80(8): 240, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296240

ABSTRACT

Improving the utilization rate of loaded-drugs is of huge importance for generating chitosan-based (CS) micro-carriers. This study aims to fabricate a novel CS microspheres co-delivered curcumin (Cur) and gallic acid (Ga) to assess drug loading and release kinetics, the blood compatibility and anti-osteosarcoma properties. The present study observes the interaction between CS and Cur/Ga molecules and estimates the change in crystallinity and loading and release rate. In addition, blood compatibility and cytotoxicity of such microspheres are also evaluated. Cur-Ga-CS microspheres present high entrapment rate of (55.84 ± 0.34) % for Ga and (42.68 ± 0.11) % for Cur, possibly attributed to surface positive charge (21.76 ± 2.46) mV. Strikingly, Cur-Ga-CS microspheres exhibit slowly sustainable release for almost 7 days in physiological buffer. Importantly, these microspheres possess negligibly toxic to blood and normal BMSC cells, but strong anti-osteosarcoma effect on U2OS cells. Overall, Cur-Ga-CS microspheres are promising to become a novel anti-osteosarcoma agent or sustainable delivery carrier in biomedical applications.


Subject(s)
Chitosan , Curcumin , Nanoparticles , Curcumin/pharmacology , Chitosan/pharmacology , Drug Carriers , Microspheres
5.
Clin. transl. oncol. (Print) ; 24(9): 1715-1731, septiembre 2022.
Article in English | IBECS | ID: ibc-206258

ABSTRACT

Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the fourth major cause of cancer-related death, with high morbidity and increased mortality year by year. Although significant progress has been made in the therapy strategies for CRC, the great difficulty in early diagnosis, feeble susceptibility to radiotherapy and chemotherapy, and high recurrence rates have reduced therapeutic efficacy resulting in poor prognosis. Therefore, it is urgent to understand the pathogenesis of CRC and unravel novel biomarkers to improve the early diagnosis, treatment and prediction of CRC recurrence. Long non-coding RNAs (lncRNAs) are non-coding RNAs with a length of more than 200 nucleotides, which are abnormally expressed in tumor tissues and cell lines, activating or inhibiting specific genes through multiple mechanisms including transcription and translation. A growing number of studies have shown that lncRNAs are important regulators of microRNAs (miRNAs, miRs) expression in CRC and may be promising biomarkers and potential therapeutic targets in the research field of CRC. This review mainly summarizes the potential application value of lncRNAs as novel biomarkers in CRC diagnosis, radiotherapy, chemotherapy and prognosis. Additionally, the significance of lncRNA SNHGs family and lncRNA–miRNA networks in regulating the occurrence and development of CRC is mentioned, aiming to provide some insights for understanding the pathogenesis of CRC and developing new diagnostic and therapeutic strategies. (AU)


Subject(s)
Humans , Biomarkers, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , MicroRNAs/genetics , Prognosis
6.
Clin Transl Oncol ; 24(9): 1715-1731, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35581419

ABSTRACT

Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the fourth major cause of cancer-related death, with high morbidity and increased mortality year by year. Although significant progress has been made in the therapy strategies for CRC, the great difficulty in early diagnosis, feeble susceptibility to radiotherapy and chemotherapy, and high recurrence rates have reduced therapeutic efficacy resulting in poor prognosis. Therefore, it is urgent to understand the pathogenesis of CRC and unravel novel biomarkers to improve the early diagnosis, treatment and prediction of CRC recurrence. Long non-coding RNAs (lncRNAs) are non-coding RNAs with a length of more than 200 nucleotides, which are abnormally expressed in tumor tissues and cell lines, activating or inhibiting specific genes through multiple mechanisms including transcription and translation. A growing number of studies have shown that lncRNAs are important regulators of microRNAs (miRNAs, miRs) expression in CRC and may be promising biomarkers and potential therapeutic targets in the research field of CRC. This review mainly summarizes the potential application value of lncRNAs as novel biomarkers in CRC diagnosis, radiotherapy, chemotherapy and prognosis. Additionally, the significance of lncRNA SNHGs family and lncRNA-miRNA networks in regulating the occurrence and development of CRC is mentioned, aiming to provide some insights for understanding the pathogenesis of CRC and developing new diagnostic and therapeutic strategies.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Biomarkers, Tumor/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasm Recurrence, Local/genetics , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
7.
Curr Gene Ther ; 22(1): 15-22, 2022.
Article in English | MEDLINE | ID: mdl-34856899

ABSTRACT

Lung adenocarcinoma (LUAD) is the common histological subtype of non-small-cell lung carcinoma (NSCLC). Circular RNAs (circRNAs) represent a new class of non-coding RNAs (ncRNAs) involved in the development of cancer. Accumulating evidence indicated that a large number of circular RNAs were found to be involved in many biological processes, including tumor initiation, proliferation and progression. These circRNAs present great potentials as new biomarkers and vital targets for disease diagnosis and prognosis. In this review, we mainly focus on the differentially expressed circRNAs and their functions in the pathogenesis of LUAD, which makes it possible for the utility of circRNAs as novel biomarkers for early diagnosis and therapy. Especially, it is helpful to develop circRNAs as crucial therapeutic targets, thus providing a promising biomedical application in the field of cancer gene therapy.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Biomarkers , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , RNA, Circular/genetics
8.
Clin Res Hepatol Gastroenterol ; 45(6): 101736, 2021 11.
Article in English | MEDLINE | ID: mdl-34146723

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth most common malignancy in the world and the fourth leading cause of cancer-related death, and its incidence is increasing globally. Despite significant advances in treatment strategies for HCC, the prognosis is still poor due to its high recurrence rate. Therefore, there is an urgent need to understand the pathogenesis of HCC and further develop new therapies to improve the prognosis and quality of life of HCC patients. MicroRNAs (miRNAs, miRs) are small non-coding RNAs involved in post-transcriptional regulation of gene expression that is abnormally expressed in cancer-associated genomic regions or vulnerable sites. More and more findings have shown that miRNAs are important regulatory factors of mRNA expression in HCC, and they are receiving more and more attention as a possible key biomarker of HCC. This review mainly summarizes the potential applied value on miRNAs as diagnostic, drug resistant, prognostic, and therapeutic biomarkers in the diagnosis, therapy, and prognosis of HCC. Also, we summarize the research value of long non-coding RNA (lncRNAs), circular RNAs (circRNAs), and miRNAs network in HCC as novel biomarkers, aiming at providing some references for the therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Biomarkers, Tumor , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Prognosis , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...