Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 12: 611610, 2021.
Article in English | MEDLINE | ID: mdl-33935705

ABSTRACT

Cholestasis is a pathological state that leads to serious liver disease; however, therapeutic options remain limited. Yinchen and Gancao are often used in combination at different ratios in traditional Chinese formulae for the treatment of jaundice and cholestasis. In the present study, we investigated the effect of decoctions containing different ratios of Yinchen and Gancao (YGD) on alpha-naphthyl isothiocyanate (ANIT)-treated intrahepatic cholestasis (IC) in mice, and further explored the underlying mechanism. Treatment with 0:4 and 1:4 YGD significantly reduced plasma total bile acid (TBA), total bilirubin (TBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities; decreased unconjugated and conjugated bile acid levels; and improved hepatocyte necrosis and inflammatory cells recruitment to hepatic sinusoids. Moreover, the expression levels of Toll-like receptor 4 (TLR4), interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor alpha (TNF-α), C-C ligand 2 (CCL2), and C-X-C ligand 2 (CXCL2) in the liver were significantly reduced. However, treatment with 4:1 and 4:0 YGD increased plasma TBA, TBIL, AST, ALT, and ALP activities and aggravated liver cell injury and inflammation. Moreover, the mRNA expression of the bile salt export pump (BSEP) in the liver was significantly increased in mice treated with 4:0 YGD. The present study demonstrates that YGD containing a high proportion of Gancao, which inhibits the TLR4/NF-κB pathway and reduces the inflammatory response, had protective effects against ANIT-treated IC in mice. However, YGD containing a high proportion of Yinchen aggravated the ANIT-treated IC in mice, which may be related to upregulation of BSEP and boosting bile acid regurgitation from damage cholangiocytes to liver in ANIT-treated IC mice.

2.
Xenobiotica ; 49(2): 152-160, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29357726

ABSTRACT

Tanshinone I (TSI) is a lipophilic diterpene in Salvia miltiorrhiza with versatile pharmacological activities. However, metabolic pathway of TSI in human is unknown. In this study, we determined major metabolites of TSI using a preparation of human liver microsomes (HLMs) by HPLC-UV and Q-Trap mass spectrometer. A total of 6 metabolites were detected, which indicated the presence of hydroxylation, reduction as well as glucuronidation. Selective chemical inhibition and purified cytochrome P450 (CYP450) isoform screening experiments revealed that CYP2A6 was primarily responsible for TSI Phase I metabolism. Part of generated hydroxylated TSI was glucuronidated via several glucuronosyltransferase (UGT) isoforms including UGT1A1, UGT1A3, UGT1A7, UGT1A9, as well as extrahepatic expressed isoforms UGT1A8 and UGT1A10. TSI could be reduced to a relatively unstable hydroquinone intermediate by NAD(P)H: quinone oxidoreductase 1 (NQO1), and then immediately conjugated with glucuronic acid by a panel of UGTs, especially UGT1A9, UGT1A1 and UGT1A8. Additionally, NQO1 could also reduce hydroxylated TSI to a hydroquinone intermediate, which was immediately glucuronidated by UGT1A1. The study demonstrated that hydroxylation, reduction as well as glucuronidation were the major pathways for TSI biotransformation, and six metabolites generated by CYPs, NQO1 and UGTs were found in HLMs and S9 subcellular fractions.


Subject(s)
Abietanes/metabolism , Microsomes, Liver/metabolism , Abietanes/pharmacokinetics , Biotransformation , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 CYP2A6/physiology , Glucuronosyltransferase/metabolism , Humans , Hydroxylation , Mass Spectrometry , Metabolic Networks and Pathways , NAD(P)H Dehydrogenase (Quinone)/metabolism , NADP/metabolism , Protein Isoforms/metabolism , Protein Isoforms/physiology , Subcellular Fractions/metabolism
3.
Acta Pharmacol Sin ; 39(8): 1393-1404, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29417949

ABSTRACT

Cryptotanshinone (CT) is the main active component in the root of Salvia miltiorrhiza Bunge (SMB) that displays antibacterial, anti-inflammatory and anticancer activities. In this study, we characterized phase I and phase II metabolism of CT in human liver microsomes in vitro and identified the metabolic enzymes (CYPs and UGTs) involved. The metabolites of CT generated by CYPs were detected using LC-MS/MS and the CYP subtypes involved in the metabolic reactions were identified using chemical inhibitors of CYP enzymes and recombinant human CYP enzymes (CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Glucuronidation of CT was also examined, and the UGT subtypes involved in the metabolic reactions were identified using recombinant human UGT enzymes (1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15 and 2B17). After adding NADPH to the human liver microsomes incubation system, CT was transformed into 6 main dehydrogenation and hydroxylation metabolites. CYP2A6, CYP3A4 and CYP2C19 were the major contributors to the transformation of its hydroxylation metabolites. CYP2C19, CYP1A2 and CYP3A4 were the major contributors to the transformation of its hydrogenation metabolites in human liver microsomes. This study showed that the metabolites at m/z of 473 were mediated by UGT1A9 and that the metabolites at m/z of 489 were mediated by UGT2B7 and UGT2B4. CT was extensively metabolized by UGTs following metabolism by CYPs in the liver.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Phenanthrenes/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Enzyme Assays , Glucuronides/biosynthesis , Glucuronides/chemistry , Humans , Microsomes, Liver/metabolism , Molecular Structure , NAD(P)H Dehydrogenase (Quinone)/metabolism , Phenanthrenes/chemistry , Recombinant Proteins/metabolism
4.
Toxicol Appl Pharmacol ; 342: 69-78, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29407775

ABSTRACT

The aim of this study was to determine the effect of ursodeoxycholic acid (UDCA) on the alpha-naphthylisothiocyanate (ANIT)-induced acute and recovery stage of cholestasis model mice. In the acute stage of model mice, pretreatment with UDCA (25, 50, and 100 mg·kg-1, ig) for 12 days prior to ANIT administration (50 mg·kg-1, ig) resulted in the dramatic increase in serum biochemistry, with aggrevation of bile infarcts and hepatocyte necrosis. The elevation of beta-muricholic acid (ß-MCA), cholic acid (CA), and taurocholic acid (TCA) in serum and liver, and reduction of these bile acids (BAs) in bile was observed. In contrast, in the recovery stage of model mice, treatment with UDCA (25, 50, and 100 mg·kg-1, ig) for 7 days after ANIT administration (50 mg·kg-1, ig) resulted in the significant decrease in levels of serum alanine aminotransferase (ALT) and total bile acid (TBA). Liver injury was attenuated, and the levels of TBA, CA, TCA, and ß-MCA in the liver were significantly decreased. Additionally, UDCA can upregulate expression of BSEP, but it cannot upregulate expression of AE2. UDCA, which induced BSEP to increase bile acid-dependent bile flow, aggravated cholestasis and liver injury when the bile duct was obstructed in the acute stage of injury in model mice. In contrast, UDCA alleviated cholestasis and liver injury induced by ANIT when the obstruction was improved in the recovery stage.


Subject(s)
1-Naphthylisothiocyanate/toxicity , Cholestasis, Intrahepatic/chemically induced , Cholestasis, Intrahepatic/drug therapy , Recovery of Function/drug effects , Ursodeoxycholic Acid/toxicity , Ursodeoxycholic Acid/therapeutic use , Acute Disease , Animals , Cholestasis, Intrahepatic/pathology , Mice , Mice, Inbred C57BL , Recovery of Function/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...