Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Behav Sci (Basel) ; 14(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38392447

ABSTRACT

Teachers' well-being at work is an important indicator of their mental health. Strengths use has been identified as a significant predictor of enhanced well-being at work. However, there is a scarcity of studies that have examined the connection between teachers' strengths use and well-being at work; thus, its underlying psychological mechanism is unclear. Therefore, this study aimed to explore the association between teachers' strengths and well-being at work together with the mediating role of basic need satisfaction. A total of 374 university teachers completed a series of questionnaires on strengths use, basic need satisfaction, hedonic well-being, and eudaimonic well-being. The results showed that there were positive correlations between strength use and both types of well-being at work. Moreover, basic need satisfaction mediated the association between strength use and two types of well-being at work. The findings suggest that institutions should prioritize enhancing teachers' ability to utilize their strengths and foster an environment conducive to such practices, thereby improving their workplace well-being.

2.
Nanoscale ; 16(2): 913-922, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38108135

ABSTRACT

Hops are a common ingredient in beer production, and a considerable quantity of hops is usually discarded as a waste material once the brewing process is completed. Transforming this waste material into valuable nanomaterials offers a sustainable approach that has the potential to significantly mitigate environmental impact. Herein, a facile and green protocol for the production of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE) as a natural precursor was demonstrated. The process involved a hydrothermal synthesis method followed by a calcination step to form the final ZnO NZs. The results revealed that lupulon, the main ß-acid in hops, particularly the phenolic hydroxy group, is primarily responsible for the biosynthesis of ZnO NZs. The WHE-ZnO NZs exhibited exceptional peroxidase-like (POD-like) activity and served as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). Analysis of the catalytic mechanism revealed that the POD-like activity of these WHE-ZnO NZs originated from their ability to expedite the transfer of electrons between TMB and H2O2, resulting in the enzymatic kinetics following the standard Michaelis-Menten mechanism. Furthermore, we developed a straightforward and user-friendly colorimetric technique for detecting both H2O2 and glucose. By utilizing the WHE-ZnO NZs as POD-like catalysts, we achieved a linear detection range of 1-1000 µM and a limit of detection of 0.24 µM (S/N = 3) for H2O2 detection and a linear range of 0-100 mM and a detection limit of 16.73 µM (S/N = 3) for glucose detection. These results highlighted the potential applications of our waste-to-resource approach for nanozyme synthesis in the field of analytical chemistry.


Subject(s)
Peroxidase , Zinc Oxide , Hydrogen Peroxide/analysis , Colorimetry/methods , Peroxidases , Glucose/analysis , Coloring Agents
3.
Huan Jing Ke Xue ; 44(1): 252-261, 2023 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-36635813

ABSTRACT

Planktonic and epiphytic bacterial communities play an important role in wetland nitrogen pollutant removal and water purification, yet their community dynamics are far from understood compared with those of the wetland soil bacterial community. Taking the planktonic bacterial community in the Yuguqiao constructed wetland and the epiphytic bacterial community on the leaf surface of the common submerged plant Vallisneria natans as the research objects, the composition, structure, and functional diversity of planktonic and epiphytic bacterial communities were analyzed using high-throughput sequencing. The results showed that the compositions of the planktonic and epiphytic bacterial communities were significantly different, with more heterotrophic and denitrifying bacteria present in the epiphytic bacterial community than in the planktonic bacterial community. The α diversity of the planktonic bacterial community was significantly different among the three sampling sites but not in the epiphytic bacterial community. In general, the OTU index and Shannon index of the epiphytic bacterial community were significantly higher than those of the planktonic bacterial community, and they had obvious spatial heterogeneity. RDA analysis showed that DO, IC, TP, NH+4, and TOC had important effects on the structural changes of both planktonic and epiphytic bacterial communities but had a greater impact on planktonic bacterial communities. Co-occurrence network analysis showed that the epiphytic bacterial community had more niche differentiation, a more stable network, and stronger resistance to external disturbance. The results of FAPROTAX functional prediction analysis showed that the nitrogen cycling, especially denitrification of the epiphytic bacterial community, was significantly greater than that of the planktonic bacterial community. The results of this study revealed the driving mechanism for maintaining the diversity of planktonic and epiphytic bacterial communities, which can provide a scientific basis for excavating and utilizing planktonic and epiphytic bacterial community resources in the construction of constructed wetlands to improve the efficiency of water purification.


Subject(s)
Hydrocharitaceae , Plankton , Wetlands , Plants , Bacteria/genetics , Nitrogen
4.
Front Microbiol ; 12: 669131, 2021.
Article in English | MEDLINE | ID: mdl-34276600

ABSTRACT

Bacterial communities have been described as early indicators of both regional and global climatic change and play a critical role in the global biogeochemical cycle. Exploring the mechanisms that determine the diversity patterns of bacterial communities and how they share different habitats along environmental gradients are, therefore, a central theme in microbial ecology research. We characterized the diversity patterns of bacterial communities in Pipahai Lake (PPH), Mayinghai Lake (MYH), and Gonghai Lake (GH), three subalpine natural lakes in Ningwu County, Shanxi, China, and analyzed the distribution of their shared and unique taxa (indicator species). Results showed that the species composition and structure of bacterial communities were significantly different among the three lakes. Both the structure of the entire bacterial community and the unique taxa were significantly influenced by the carbon content (TOC and IC) and space distance; however, the structure of the shared taxa was affected by conductivity (EC), pH, and salinity. The structure of the entire bacterial community and unique taxa were mainly affected by the same factors, suggesting that unique taxa may be important in maintaining the spatial distribution diversity of bacterial communities in subalpine natural freshwater lakes. Our results provide new insights into the diversity maintenance patterns of the bacterial communities in subalpine lakes, and suggest dispersal limitation on bacterial communities between adjacent lakes, even in a small local area. We revealed the importance of unique taxa in maintaining bacterial community structure, and our results are important in understanding how bacterial communities in subalpine lakes respond to environmental change in local habitats.

SELECTION OF CITATIONS
SEARCH DETAIL
...