Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(12): 3727-3736, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498766

ABSTRACT

The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.


Subject(s)
Glioblastoma , Glioma , Nanoparticles , Nitrophenols , Humans , Glioblastoma/pathology , X-Rays , Cell Line, Tumor , Glioma/drug therapy , Nanoparticles/chemistry , Chemoradiotherapy , Doxorubicin
2.
Chem Sci ; 14(47): 13860-13869, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38075660

ABSTRACT

Accurately quantifying microRNA levels in vivo is of great importance for cancer staging and prognosis. However, the low abundance of microRNAs and interference from the complex tumor microenvironment usually limit the real-time quantification of microRNAs in vivo. Herein, for the first time, we develop an ultrasensitive microRNA (miR)-21 activated ratiometric nanoprobe for quantification of the miR-21 concentration in vivo without signal amplification as well as dynamic tracking of its distribution. The core-satellite nanoprobe by miR-21 triggered in situ self-assembly was built on nanogapped gold nanoparticles (AuNNP probe) and gold nanoparticles (AuNP probe). The AuNP probe generated a photoacoustic (PA) signal and ratiometric SERS signal with the variation of miR-21, whereas the AuNNP probe served as an internal standard, enabling ratiometric SERS imaging of miR-21. The absolute concentration of miR-21 in MCF-7 tumor-bearing mice was quantified to be 83.8 ± 24.6 pM via PA and ratiometric SERS imaging. Our strategy provides a powerful approach for the quantitative detection of microRNAs in vivo, providing a reference for the clinical treatment of cancer.

3.
ACS Sens ; 8(12): 4737-4746, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38008917

ABSTRACT

Understanding the pharmacokinetics of prodrugs in vivo necessitates quantitative, noninvasive, and real-time monitoring of drug release, despite its difficulty. Ratiometric photoacoustic (PA) imaging, a promising deep tissue imaging technology with a unique capacity for self-calibration, can aid in solving this problem. Here, for the first time, a methylamino-substituted Aza-BODIPY (BDP-N) and the chemotherapeutic drug camptothecin (CPT) are joined via a disulfide chain to produce the molecular theranostic prodrug (BSC) for real-time tumor mapping and quantitative visualization of intratumoral drug release using ratiometric PA imaging. Intact BSC has an extremely low toxicity, with a maximum absorption at ∼720 nm; however, endogenous glutathione (GSH), which is overexpressed in tumors, will cleave the disulfide bond and liberate CPT (with full toxicity) and BDP-N. This is accompanied by a significant redshift in absorption at ∼800 nm, resulting in the PA800/PA720 ratio. In vitro, a linear relationship is successfully established between PA800/PA720 values and CPT release rates, and subsequent experiments demonstrate that this relationship can also be applied to the quantitative detection of intratumoral CPT release in vivo. Notably, the novel ratiometric strategy eliminates nonresponsive interference and amplifies the multiples of the signal response to significantly improve the imaging contrast and detection precision. Therefore, this research offers a viable alternative for the design of molecular theranostic agents for the clinical diagnosis and treatment of tumors.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Prodrugs , Humans , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Prodrugs/therapeutic use , Drug Liberation , Photoacoustic Techniques/methods , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Disulfides/chemistry
4.
Nat Mater ; 22(11): 1421-1429, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37667071

ABSTRACT

X-ray-induced afterglow and radiodynamic therapy tackle the tissue penetration issue of optical imaging and phototherapy. However, inorganic nanophosphors used in this therapy have their radio afterglow dynamic function as always on, limiting the detection specificity and treatment efficacy. Here we report organic luminophores (IDPAs) with near-infrared afterglow and 1O2 production after X-ray irradiation for cancer theranostics. The in vivo radio afterglow of IDPAs is >25.0 times brighter than reported inorganic nanophosphors, whereas the radiodynamic production of 1O2 is >5.7 times higher than commercially available radio sensitizers. The modular structure of IDPAs permits the development of a smart molecular probe that only triggers its radio afterglow dynamic function in the presence of a cancer biomarker. Thus, the probe enables the ultrasensitive detection of a diminutive tumour (0.64 mm) with superb contrast (tumour-to-background ratio of 234) and tumour-specific radiotherapy for brain tumour with molecular precision at low dosage. Our work reveals the molecular guidelines towards organic radio afterglow agents and highlights new opportunities for cancer radio theranostics.


Subject(s)
Nanoparticles , Neoplasms , Humans , Molecular Probes , Precision Medicine , Nanoparticles/chemistry , Phototherapy
5.
Anal Chem ; 95(30): 11219-11226, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37471506

ABSTRACT

Fluorescence imaging requires real-time external light excitation; however, it has the drawbacks of autofluorescence and shallower penetration depth, limiting its application in deep tissue imaging. At the same time, ultrasound (US) has high spatiotemporal resolution, deep penetrability, noninvasiveness, and precise localization of lesions; thus, it can be a promising alternative to light. However, US-activated luminescence has been rarely reported. Herein, an US-activated near-infrared (NIR) chemiluminescence (CL) molecule, namely, PNCL, is designed by protoporphyrin IX as a sonosensitizer moiety and a phenoxy-dioxetane precursor containing a dicyanomethyl chromone acceptor scaffold (NCL) as the US-responsive moiety. After therapeutic US radiation (1 MHz), the singlet oxygen (1O2), as an "intermediary", oxidizes the enol-ether bond of the NCL moiety and then emits NIR light via spontaneous decomposition. Combining the deep penetrability of US with a high signal-to-background ratio of NIR CL, the designed probe PNCL successfully realizes US-activated deep tissue imaging (∼20 mm) and selectively turns on signals in specific tumor foci. Bridging US chemistry with luminescence using an "intermediary" will provide new imaging methods for accurate cancer diagnosis.


Subject(s)
Luminescence , Neoplasms , Humans , Optical Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy
6.
Nano Lett ; 23(9): 3929-3938, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37129144

ABSTRACT

Manufacturing heteronanostructures with specific physicochemical characteristics and tightly controllable designs is very appealing. Herein, we reported NIR-II light-driven dual plasmonic (AuNR-SiO2-Cu7S4) antimicrobial nanomotors with an intended Janus configuration through the overgrowth of copper-rich Cu7S4 nanocrystals at only one high-curvature site of Au nanorods (Au NRs). These nanomotors were applied for photoacoustic imaging (PAI)-guided synergistic photothermal and photocatalytic treatment of bacterial infections. Both the photothermal performance and photocatalytic activity of the nanomotors are dramatically improved owing to the strong plasmon coupling between Au NRs and the Cu7S4 component and enhanced energy transfer. The motion behavior of nanomotors promotes transdermal penetration and enhances the matter-bacteria interaction. More importantly, the directional navigation and synergistic antimicrobial activity of the nanomotors could be synchronously driven by NIR-II light. The marriage of active motion and enhanced antibacterial activity resulted in the expected good antibacterial effects in an abscess infection mouse model.


Subject(s)
Nanoparticles , Nanotubes , Animals , Mice , Silicon Dioxide , Phototherapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gold/therapeutic use , Gold/chemistry
7.
Angew Chem Int Ed Engl ; 62(29): e202305744, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37221136

ABSTRACT

Radiotherapy (RT) is an effective and widely applied cancer treatment strategy in clinic. However, it usually suffers from radioresistance of tumor cells and severs side effects of excessive radiation dose. Therefore, it is highly significant to improve radiotherapeutic performance and monitor real-time tumor response, achieving precise and safe RT. Herein, an X-ray responsive radio-pharmaceutical molecule containing chemical radiosensitizers of diselenide and nitroimidazole (BBT-IR/Se-MN) is reported. BBT-IR/Se-MN exhibits enhanced radiotherapeutic effect via a multifaceted mechanisms and self-monitoring ROS levels in tumors during RT. Under X-ray irradiation, the diselenide produces high levels of ROS, leading to enhanced DNA damage of cancer cell. Afterwards, the nitroimidazole in the molecule inhibits the damaged DNA repair, offering a synergetic radiosensitization effect of cancer. Moreover, the probe shows low and high NIR-II fluorescence ratios in the absence and presence of ROS, which is suitable for precise and quantitative monitoring of ROS during sensitized RT. The integrated system is successfully applied for radiosensitization and the early prediction of in vitro and in vivo RT efficacy.


Subject(s)
Neoplasms , Radiation-Sensitizing Agents , Humans , Reactive Oxygen Species , Fluorescent Dyes , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Pharmaceutical Preparations , Cell Line, Tumor
8.
Proc Natl Acad Sci U S A ; 120(8): e2205186120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36787363

ABSTRACT

Chemiluminescence (CL) with the elimination of excitation light and minimal autofluorescence interference has been wieldy applied in biosensing and bioimaging. However, the traditional emission of CL probes was mainly in the range of 400 to 650 nm, leading to undesired resolution and penetration in a biological object. Therefore, it was urgent to develop CL molecules in the near-infrared window [NIR, including NIR-I (650 to 900 nm) and near-infrared-II (900 to 1,700 nm)], coupled with unique advantages of long-time imaging, sensitive response, and high resolution at depths of millimeters. However, no NIR-II CL unimolecular probe has been reported until now. Herein, we developed an H2S-activated NIR-II CL probe [chemiluminiscence donor 950, (CD-950)] by covalently connecting two Schaap's dioxetane donors with high chemical energy to a NIR-II fluorophore acceptor candidate via intramolecular CL resonance energy transfer strategy, thereby achieving high efficiency of 95%. CD-950 exhibited superior capacity including long-duration imaging (~60 min), deeper tissue penetration (~10 mm), and specific H2S response under physiological conditions. More importantly, CD-950 showed detection capability for metformin-induced hepatotoxicity with 2.5-fold higher signal-to-background ratios than that of NIR-II fluorescence mode. The unimolecular NIR-II CL probe holds great potential for the evaluation of drug-induced side effects by tracking its metabolites in vivo, further facilitating the rational design of novel NIR-II CL-based detection platforms.


Subject(s)
Luminescence , Molecular Probes , Fluorescent Dyes/chemistry , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods
9.
Neural Netw ; 161: 254-266, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36774864

ABSTRACT

Matrix factorization has always been an encouraging field, which attempts to extract discriminative features from high-dimensional data. However, it suffers from negative generalization ability and high computational complexity when handling large-scale data. In this paper, we propose a learnable deep matrix factorization via the projected gradient descent method, which learns multi-layer low-rank factors from scalable metric distances and flexible regularizers. Accordingly, solving a constrained matrix factorization problem is equivalently transformed into training a neural network with an appropriate activation function induced from the projection onto a feasible set. Distinct from other neural networks, the proposed method activates the connected weights not just the hidden layers. As a result, it is proved that the proposed method can learn several existing well-known matrix factorizations, including singular value decomposition, convex, nonnegative and semi-nonnegative matrix factorizations. Finally, comprehensive experiments demonstrate the superiority of the proposed method against other state-of-the-arts.


Subject(s)
Algorithms , Neural Networks, Computer , Learning , Generalization, Psychological , Forecasting
10.
Adv Sci (Weinh) ; 10(8): e2202051, 2023 03.
Article in English | MEDLINE | ID: mdl-36683237

ABSTRACT

Surface-enhanced Raman scattering (SERS) is a feasible and ultra-sensitive method for biomedical imaging and disease diagnosis. SERS is widely applied to in vivo imaging due to the development of functional nanoparticles encoded by Raman active molecules (SERS nanoprobes) and improvements in instruments. Herein, the recent developments in SERS active materials and their in vivo imaging and biosensing applications are overviewed. Various SERS substrates that have been successfully used for in vivo imaging are described. Then, the applications of SERS imaging in cancer detection and in vivo intraoperative guidance are summarized. The role of highly sensitive SERS biosensors in guiding the detection and prevention of diseases is discussed in detail. Moreover, its role in the identification and resection of microtumors and as a diagnostic and therapeutic platform is also reviewed. Finally, the progress and challenges associated with SERS active materials, equipment, and clinical translation are described. The present evidence suggests that SERS could be applied in clinical practice in the future.


Subject(s)
Biosensing Techniques , Nanoparticles , Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Molecular Imaging
11.
Chem Sci ; 13(43): 12840-12850, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36519050

ABSTRACT

Radiosensitizers potentiate the radiotherapy effect while effectively reducing the damage to healthy tissues. However, limited sample accumulation efficiency and low radiation energy deposition in the tumor significantly reduce the therapeutic effect. Herein, we developed multifunctional photocatalysis-powered dandelion-like nanomotors composed of amorphous TiO2 components and Au nanorods (∼93 nm in length and ∼16 nm in outer diameter) by a ligand-mediated interface regulation strategy for NIR-II photoacoustic imaging-guided synergistically enhanced cancer radiotherapy. The non-centrosymmetric nanostructure generates stronger local plasmonic near-fields close to the Au-TiO2 interface. Moreover, the Au-TiO2 Schottky heterojunction greatly facilitates the separation of photogenerated electron-hole pairs, enabling hot electron injection, finally leading to highly efficient plasmon-enhanced photocatalytic activity. The nanomotors exhibit superior motility both in vitro and in vivo, propelled by H2 generated via NIR-catalysis on one side of the Au nanorod, which prevents them from returning to circulation and effectively improves the sample accumulation in the tumor. Additionally, a high radiation dose deposition in the form of more hydroxyl radical generation and glutathione depletion is authenticated. Thus, synergistically enhanced radiotherapeutic efficacy is achieved in both a subcutaneous tumor model and an orthotopic model.

12.
Small ; 18(41): e2202551, 2022 10.
Article in English | MEDLINE | ID: mdl-36089652

ABSTRACT

The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Cell Line, Tumor , Micelles , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Singlet Oxygen , Thiophenes
13.
ACS Nano ; 16(10): 16880-16897, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36136320

ABSTRACT

Most treatments for spinal cancer are accompanied by serious side effects including subsequent tumor recurrence, spinal cord compression, and tissue adhesion, thus a highly effective treatment is crucial for preserving spinal and neurological functionalities. Herein, trilayered electrospun doxorubicin@bovine serum albumin/poly(ε-caprolactone)/manganese dioxide (DOX@BSA/PCL/MnO2) nanofibers with excellent antiadhesion ability, dual glutathione/hydrogen peroxide (GSH/H2O2) responsiveness, and cascade release of Mn2+/DOX was fabricated for realizing an efficient spinal tumor therapy. In detail, Fenton-like reactions between MnO2 in the fibers outermost layer and intra-/extracellular glutathione within tumors promoted the first-order release of Mn2+. Then, sustained release of DOX from the fibers' core layer occurred along with the infiltration of degradation fluid. Such release behavior avoided toxic side effects of drugs, regulated inflammatory tumor microenvironment, amplified tumor elimination efficiency through synergistic chemo-/chemodynamic therapies, and inhibited recurrence of spinal tumors. More interestingly, magnetic resonance and photoacoustic dual-modal imaging enabled visualizations of tumor therapy and material degradation in vivo, achieving rapid pathological analysis and diagnosis. On the whole, such versatile hierarchical-structured nanofibers provided a reference for rapid and potent theranostic of spinal cancer in future clinical translations.


Subject(s)
Nanofibers , Nanoparticles , Neoplasms , Spinal Neoplasms , Humans , Manganese Compounds/pharmacology , Spinal Neoplasms/drug therapy , Hydrogen Peroxide , Serum Albumin, Bovine , Oxides , Tissue Adhesions/drug therapy , Delayed-Action Preparations , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/therapy , Glutathione/metabolism , Cell Line, Tumor , Tumor Microenvironment
14.
Biosens Bioelectron ; 216: 114632, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35988429

ABSTRACT

Real-time imaging of reactive oxygen species (ROS) during cisplatin chemotherapy of cancer is imperative to fully reveal their functions in the biological response to cisplatin. Currently, using a bioluminescent probe for real-time imaging of a specific ROS in vivo during cisplatin chemotherapy has not been achieved. Herein, three bioluminescent probes, F Probe, N Probe and P Probe were synthesized for real-time imaging of the primary ROS, O2•-. They all consisted of a bioluminescent emitter D-luciferin (D-LH2) and an O2•--recognition group, and their bioluminescent signal could be turned on in response to O2•-. In vitro results indicated that P Probe was the most suitable one among the three probes for detection of O2•-, with high sensitivity, excellent selectivity and stability. P Probe was then successfully applied for real-time imaging of O2•- in both cancer cells and tumors during cisplatin chemotherapy. The imaging results demonstrated that O2•- amount in cancer cells increased with the increasing dose of cisplatin, and that cisplatin-induced upregulation of O2•- level in cancer cells was upstream of the cancer-killing pathway of cisplatin. We envision that P Probe may serve as an elucidative tool to further explore the role of O2•- in cisplatin chemotherapy.


Subject(s)
Biosensing Techniques , Luminescent Agents , Neoplasms , Cisplatin/pharmacology , Humans , Luminescent Measurements/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Reactive Oxygen Species
15.
Anal Chem ; 94(30): 10797-10804, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35829734

ABSTRACT

Metformin is commonly used for clinical treatment of type-2 diabetes, but long-term or overdose intake of metformin usually causes selective upregulation of H2S level in the liver, resulting in liver injury. Therefore, tracking the changes of H2S content in the liver would contribute to the prevention and diagnosis of liver injury. However, in the literature, there are few reports on ratiometric PA molecular probes for H2S detection in drug-induced liver injury (DILI). Accordingly, here we developed a H2S-activated ratiometric PA probe, namely BDP-H2S, based Aza-BODIPY dye for detecting the H2S upregulation of metformin-induced liver injury. Due to the intramolecular charge transfer (ICT) effect, BDP-H2S exhibited a strong PA signal at 770 nm. Following the response to H2S, its ICT effect was recovered which showed a decrement of PA770 and an enhancement of PA840. The ratiometric PA signal (PA840/PA770) showed excellent H2S selectivity response with a low limit of detection (0.59 µM). Bioimaging experiments demonstrated that the probe has been successfully used for ratiometric PA imaging of H2S in cells and metformin-induced liver injury in mice. Overall, the designed probe emerges as a powerful tool for noninvasive and accurate imaging of H2S level and tracking its distribution and variation in liver in-real time.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hydrogen Sulfide , Metformin , Photoacoustic Techniques , Animals , Fluorescent Dyes/pharmacology , Mice , Photoacoustic Techniques/methods
16.
Anal Chem ; 94(29): 10540-10548, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35819004

ABSTRACT

Inorganic nanoprobes have attracted increasing attention in the biomedical field due to their versatile functionalities and excellent optical properties. However, conventional nanoprobes have a relatively low retention time in the tumor and are mostly applied in the first near-infrared window (NIR-I, 650-950 nm), limiting their applications in accurate and deep tissue imaging. Herein, we develop a Janus nanoprobe, which can undergo tumor microenvironment (TME)-induced aggregation, hence, promoting tumor retention time and providing photoacoustic (PA) imaging in the second NIR (NIR-II, 950-1700 nm) window, and enhancing photodynamic therapy (PDT) effect. Ternary Janus nanoprobe is composed of gold nanorod (AuNR) coated with manganese dioxide (MnO2) and photosensitizer pyropheophorbide-a (Ppa) on two ends of AuNR, respectively, named as MnO2-AuNR-Ppa. In the tumor, MnO2 could be etched by glutathione (GSH) to release Mn2+, which is coordinated with multiple Ppa molecules to induce in situ aggregation of AuNRs. The aggregation of AuNR effectively improves the NIR-II photoacoustic signal in vivo. Moreover, the increased retention time of nanoprobes and GSH reduction in the tumor greatly improve the PDT effect. We believe that this work will inspire further research on specific in situ aggregation of inorganic nanoparticles.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Photochemotherapy , Glutathione , Humans , Manganese Compounds , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oxides , Photoacoustic Techniques/methods , Tumor Microenvironment
17.
ACS Nano ; 16(5): 7947-7960, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35536639

ABSTRACT

Synthetic micro/nanomotors have great potential in deep tissue imaging and in vivo drug delivery because of their active motion ability. However, applying nanomotors with a size less than 100 nm to in vivo imaging and therapy is one of the core changes in this field. Herein, a nanosized hydrogen peroxide (H2O2)-driven Janus gold nanorod-platinum (JAuNR-Pt) nanomotor is developed for enhancing the second near-infrared region (NIR-II) photoacoustic (PA) imaging of deep tissues of tumors and for effective tumor treatment. The JAuNR-Pt nanomotor is prepared by depositing platinum (Pt) on one end of a gold nanorod with varying proportions of Pt shell coverage, including 10%, 25%, 50%, 75%, and 100%. The JAuNR-Pt nanomotor with Pt shell coverage proportions of 50% exhibits the highest diffusion coefficient (De), and it can rapidly move in the presence of H2O2. The self-propulsion of JAuNR-Pt nanomotor enhances cellular uptake, accelerates lysosomal escape, and facilitates continuous release of cytotoxic Pt2+ ions to the nucleus, causing DNA damage and cell apoptosis. The JAuNR-Pt nanomotor presents deep penetration and enhanced accumulation in tumors as well as high tumor treatment effect. Therefore, this work displays deep tumor imaging and an excellent antitumor effect, providing an effective tool for accurate diagnosis and treatment of diseases.


Subject(s)
Neoplasms , Photoacoustic Techniques , Humans , Platinum , Photoacoustic Techniques/methods , Hydrogen Peroxide , Gold , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
18.
Theranostics ; 12(3): 1459-1485, 2022.
Article in English | MEDLINE | ID: mdl-35154500

ABSTRACT

Exploring and understanding the interaction of changes in the activities of various enzymes, such as proteases, phosphatases, and oxidoreductases with tumor invasion, proliferation, and metastasis is of great significance for early cancer diagnosis. To detect the activity of tumor-related enzymes, various molecular probes have been developed with different imaging methods, including optical imaging, photoacoustic imaging (PAI), magnetic resonance imaging, positron emission tomography, and so on. In this review, we first describe the biological functions of various enzymes and the selectively recognized chemical linkers or groups. Subsequently, we systematically summarize the design mechanism of imaging probes and different imaging methods. Finally, we explore the challenges and development prospects in the field of enzyme activity detection. This comprehensive review will provide more insight into the design and development of enzyme activated molecular probes.


Subject(s)
Neoplasms , Photoacoustic Techniques , Humans , Molecular Imaging/methods , Molecular Probes/chemistry , Neoplasms/diagnostic imaging , Optical Imaging/methods , Photoacoustic Techniques/methods , Tomography, X-Ray Computed
19.
ACS Nano ; 16(2): 2889-2900, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35084178

ABSTRACT

Cell survival rate determines engraftment efficiency in adipose-derived mesenchymal stem cell (ADSC)-based regenerative medicine. In vivo monitoring of ADSC viability to achieve effective tissue regeneration is a major challenge for ADSC therapy. Here, we developed an activated near-infrared II (NIR-II) fluorescent nanoparticle consisting of lanthanide-based down-conversion nanoparticles (DCNPs) and IR786s (DCNP@IR786s) for cell labeling and real-time tracking of ADSC viability in vivo. In dying ADSCs due to excessive ROS generation, absorption competition-induced emission of IR786s was destroyed, which could turn on the NIR-II fluorescent intensity of DCNPs at 1550 nm by 808 nm laser excitation. In contrast, the NIR-II fluorescent intensity of DCNPs was stable at 1550 nm by 980 nm laser excitation. This ratiometric fluorescent signal was precise and sensitive for tracking ADSC viability in vivo. Significantly, the nanoparticle could be applied to quantitively evaluate stem cell viability in real-time in vivo. Using this method, we successfully sought two small molecules including glutathione and dexamethasone that could improve stem cell engraftment efficiency and enhance ADSC therapy in a liver fibrotic mouse model. Therefore, we provide a potential strategy for real-time in vivo quantitative tracking of stem cell viability in ADSC therapy.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Adipose Tissue , Animals , Cell Survival , Mice , Optical Imaging , Stem Cells
20.
Small ; 18(5): e2105160, 2022 02.
Article in English | MEDLINE | ID: mdl-34821027

ABSTRACT

Heteroatom interaction of atomically thin nanomaterials enables the improvement of electronic transfer, band structure, and optical properties. Black phosphorus quantum dots (BP QDs) are considered to be candidate diagnostic and/or therapeutic agents due to their innate biocompatibility and exceptional photochemical effects. However, BP QDs are not competitive regarding second near-infrared (NIR-II) window medical diagnosis and X-ray induced phototherapy. Here, an Nd3+ ion coordinated BP QD (BPNd) is synthesized with the aim to sufficiently improve its performances in NIR-II fluorescence imaging and X-ray induced photodynamic therapy, benefitting from the retrievable NIR/X-ray optoelectronic switching effects between BP QD and Nd3+ ion. Given its ultrasmall size and efficient cargo loading capacity, BPNd can easily cross the blood-brain barrier to precisely monitor the growth of glioblastoma through intracranial NIR-II fluorescence imaging and impede its progression by specific X-ray induced, synergistic photodynamic chemotherapy.


Subject(s)
Glioblastoma , Quantum Dots , Glioblastoma/diagnostic imaging , Humans , Neodymium , Phosphorus/chemistry , Quantum Dots/chemistry , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...