Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7862, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36543782

ABSTRACT

The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.

2.
Sci Rep ; 10(1): 3330, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32071353

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Science ; 367(6473): 79-83, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31896715

ABSTRACT

Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared pulsed lasers, resulting in a 104 reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. We present an experimental demonstration of a waveguide-integrated DLA that was designed using a photonic inverse-design approach. By comparing the measured electron energy spectra with particle-tracking simulations, we infer a maximum energy gain of 0.915 kilo-electron volts over 30 micrometers, corresponding to an acceleration gradient of 30.5 mega-electron volts per meter. On-chip acceleration provides the possibility for a completely integrated mega-electron volt-scale DLA.

4.
Sci Rep ; 9(1): 19728, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31871322

ABSTRACT

Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell's equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell's equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell's equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10-50) in the number of GMRES iterations required for solving frequency-domain Maxwell's equations.

5.
Nat Commun ; 10(1): 3309, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31346175

ABSTRACT

Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.

6.
Sci Rep ; 9(1): 8999, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227721

ABSTRACT

Inverse design methods produce nanophotonic devices with arbitrary geometries that show high efficiencies as well as novel functionalities. Ensuring fabricability during optimization of these unrestricted device geometries is a major challenge for these design methods. In this work, we construct a fabrication constraint penalty function for level set geometry representations of these devices. This analytical penalty function limits both the gap size and boundary curvature of a device. We incorporate this penalty in a fully automated optical design flow using a quasi-Newton optimization method. The performance of our design method is evaluated by designing a series of waveguide demultiplexers (WDM) and mode converters with various footprints and minimum feature sizes. Finally, we design and experimentally characterize three WDMs with a 80 nm, 120 nm and 160 nm feature size.

7.
Opt Express ; 26(4): 4023-4034, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475258

ABSTRACT

We present a gradient-based algorithm to design general 1D grating couplers without any human input from start to finish, including a choice of initial condition. We show that we can reliably design efficient couplers to have multiple functionalities in different geometries, including conventional couplers for single-polarization and single-wavelength operation, polarization-insensitive couplers, and wavelength-demultiplexing couplers. In particular, we design a fiber-to-chip blazed grating with under 0.2 dB insertion loss that requires a single etch to fabricate and no back-reflector.

8.
Sci Rep ; 7(1): 1786, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28496126

ABSTRACT

A major difficulty in applying computational design methods to nanophotonic devices is ensuring that the resulting designs are fabricable. Here, we describe a general inverse design algorithm for nanophotonic devices that directly incorporates fabrication constraints. To demonstrate the capabilities of our method, we designed a spatial-mode demultiplexer, wavelength demultiplexer, and directional coupler. We also designed and experimentally demonstrated a compact, broadband 1 × 3 power splitter on a silicon photonics platform. The splitter has a footprint of only 3.8 × 2.5 µm, and is well within the design rules of a typical silicon photonics process, with a minimum radius of curvature of 100 nm. Averaged over the designed wavelength range of 1400-1700 nm, our splitter has a measured insertion loss of 0.642 ± 0.057 dB and power uniformity of 0.641 ± 0.054 dB.

9.
Adv Mater ; 27(48): 8028-34, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26549512

ABSTRACT

An absorptive metasurface based on film-coupled colloidal silver nanocubes is demonstrated. The metasurfaces are fabricated using simple dip-coating methods and can be deposited over large areas and on arbitrarily shaped objects. The surfaces show nearly complete absorption, good off-angle performance, and the resonance can be tuned from the visible to the near-infrared.

SELECTION OF CITATIONS
SEARCH DETAIL
...