Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37630463

ABSTRACT

Capsaicin (CAP) has various biological activities; it has antibacterial, anti-inflammatory and antioxidant properties, and stimulates intestinal development. The aim of this study was to investigate the effect of CAP on the health of nursing calves under group housing conditions. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups of eight calves each. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of CAP in each of the three treatment groups. Following a one-month clinical trial of individual-pen housing, an extended one-month trial of group housing was conducted. At the end of the trial, serum samples, rectal fecal samples and upper respiratory swab samples were collected to determine the effect of CAP addition on serum parameters, fecal fermentation parameters and upper respiratory microbiota of calves under group housing conditions. The results showed that the addition of high doses of CAP decreased calf respiratory scores (p < 0.05), increased serum glutathione peroxidase, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 concentration (p < 0.05), and decreased malondialdehyde, amyloid A and haptoglobin concentration (p < 0.05). Moreover, high doses of CAP increased the rectal fecal concentration of total short-chain fatty acids, acetate and butyric acid (p < 0.05). In addition, CAP regulated the upper respiratory tract microbiota, with high doses of CAP reducing Mycoplasma abundance (p < 0.05), two doses of CAP reducing Corynebacterium abundance (p < 0.05) and a tendency to reduce Staphylococcus abundance (p = 0.06). Thus, CAP can improve calf antioxidant capacity, immune capacity and reduce inflammatory factors, stress proteins as well as improve gut fermentation and upper respiratory microbiota under group housing conditions, which is beneficial for healthy calf growth.

2.
Animals (Basel) ; 13(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570255

ABSTRACT

Dairy cow mastitis is one of the common diseases of dairy cows, which will not only endanger the health of dairy cows but also affect the quality of milk. Dairy cow mastitis is an inflammatory reaction caused by pathogenic microorganisms and physical and chemical factors in dairy cow mammary glands. The number of SCC in the milk of dairy cows with different degrees of mastitis will increase in varying degrees. The rapid diagnosis of dairy cow mastitis is of great significance for dairy cow health and farm economy. Based on the results of many studies on the relationship between mastitis and somatic cell count in dairy cows, microflora, and metabolites in the milk of Holstein cows with low somatic cell level (SCC less than 200,000), medium somatic cell level (SCC up to 200,000 but less than 500,000) and high somatic cell level (SCC up to 5000,00) were analyzed by microbiome and metabolic group techniques. The results showed that there were significant differences in milk microbiota and metabolites among the three groups (p < 0.05), and there was a significant correlation between microbiota and metabolites. Meanwhile, in this experiment, 75 differential metabolites were identified in the H group and L group, 40 differential metabolites were identified in the M group and L group, and six differential microorganisms with LDA scores more than four were found in the H group and L group. These differential metabolites and differential microorganisms may become new biomarkers for the diagnosis, prevention, and treatment of cow mastitis in the future.

3.
Animals (Basel) ; 13(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570353

ABSTRACT

Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.

4.
Animals (Basel) ; 13(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37508086

ABSTRACT

Capsaicin is the active ingredient of the red pepper plant of the genus Capsicum. The aim of this study was to investigate the effects of different doses of capsaicin on growth performance, antioxidant capacity, immunity, fecal fermentation parameters and gut microbial composition in nursing calves. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups, which each consisted of eight calves. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of capsaicin in each of the three treatment groups. During the 4-week experiment, intake was recorded daily, body weight and body size parameters were measured at the beginning and end of the trial and serum samples and rectal fecal samples were collected at the end of the trial to determine serum parameters, fecal fermentation parameters and fecal microbiome compartments. The results showed that both doses of capsaicin had no negative effect on the growth performance or the fecal fermentation parameters of calves, and the higher dose (0.3 mL/d) of capsaicin significantly improved the antioxidant capacity and immunity of calves. The calves in the high-dose capsaicin-treated group had lower fecal scores than those recorded in the control group. High doses of capsaicin increased glutathione antioxidant enzyme, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 levels and decreased malondialdehyde and bound bead protein levels. In addition, capsaicin regulated the gut microbiota, reducing the abundance of diarrhea-associated bacteria, such as Eggerthella, Streptococcus, Enterococcus and Enterobacteriaceae, in the gut of calves in the treated group. Therefore, high doses of capsaicin can improve the antioxidant and immune capacity of calves without affecting growth performance, as well as improve the gut microbiological environment, which enables the healthy growth of calves.

SELECTION OF CITATIONS
SEARCH DETAIL
...