Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 8917, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827711

ABSTRACT

We report longer surface plasmon polariton propagation distance based on crystalline crystal silver at low temperature. Although enhanced plasmonic performance at low temperature has been predicted for a long time, it has not been directly observed on polycrystalline silver films which suffer from significant plasmonic losses due to grain boundaries and rough silver surface. Here we show that longer propagation distance can be achieved with epitaxial silver at low temperature. Importantly, the enhancement at low temperature are consistent across silver films grown with different methods.

2.
ACS Nano ; 10(11): 9852-9860, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27656756

ABSTRACT

Aluminum (Al) provides an excellent material platform for plasmonic applications in the ultraviolet (UV) regime due to its low loss coefficient at UV wavelengths. To fully realize the potential of this material, it is imperative to create nanostructures with minimal defects in order to prevent light scattering and better support plasmonic resonances. In this work, we report the successful development of atomically smooth epitaxial Al films on silicon. These epitaxial Al thin films facilitate the creation of fine plasmonic nanostructures and demonstrate considerable loss reduction in the UV frequency range, in comparison to the polycrystalline Al films based on spectroscopic ellipsometry measurements. Remarkably, our measurements on the epitaxial Al film grown using the two-step method suggest that the intrinsic loss in Al is significantly lower, by up to a factor of 2 in the UV range, with respect to current widely quoted Palik's values extracted from polycrystalline films. These high-quality epitaxial Al films provide an ideal platform for UV plasmonics. In addition, the availability of intrinsic optical constants will enable more accurate theoretical predictions to guide the device design.

3.
Ultramicroscopy ; 135: 121-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-22939703

ABSTRACT

We have developed a high-sensitivity atomic force microscopy (AFM) mode operated in aqueous environment based on the torsional resonance of the cantilever. It is found that the torsional mode can achieve a good spatial resolution even with a relatively large tip. We have used this mode to image different soft materials in water, including DNA molecules and purple membrane. High-resolution images of purple membrane can be obtained at a relatively low ion concentration under a long-range electrostatic force. Thus the torsional mode allows investigators to probe surface structures and their properties under a wide range of solution conditions.


Subject(s)
Microscopy, Atomic Force/methods , Water/chemistry , DNA/chemistry , Purple Membrane/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...