Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2309569, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973195

ABSTRACT

Radiotherapy plays a vital role in cancer therapy. However, the hypoxic microenvironment of tumors greatly limits the effectiveness, thus it is crucial to develop a simple, efficient, and safe radiosensitizer to reverse hypoxia and ameliorate the efficacy of radiotherapy. Inspired by the structure of canonical nanodrug Abraxane, herein, a native HSA-modified CaO2 nanoparticle system (CaO2-HSA) prepared by biomineralization-induced self-assembly is developed. CaO2-HSA will accumulate in tumor tissue and decompose to produce oxygen, altering the hypoxic condition inside the tumor. Simultaneously, ROS and calcium ions will lead to calcium overload and further trigger immunogenic cell death. Notably, its sensitizing enhancement ratio (SER = 3.47) is much higher than that of sodium glycididazole used in the clinic. Furthermore, in animal models of in situ oral cancer, CaO2-HSA can effectively inhibit tumor growth. With its high efficacy, facile preparation, and heavy-metal free biosafety, the CaO2-HSA-based radiosensitizer holds enormous potential for oral cancer therapy.

2.
Insect Sci ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594229

ABSTRACT

Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.

3.
Front Microbiol ; 13: 934459, 2022.
Article in English | MEDLINE | ID: mdl-36118209

ABSTRACT

The gut microbiome is a crucial element that facilitates a host's adaptation to a changing environment. Compared to the western honeybee Apis mellifera, the Asian honeybee, Apis cerana populations across its natural range remain mostly semi-feral and are less affected by bee management, which provides a good system to investigate how gut microbiota evolve under environmental heterogeneity on large geographic scales. We compared and analyzed the gut microbiomes of 99 Asian honeybees, from genetically diverged populations covering 13 provinces across China. Bacterial composition varied significantly across populations at phylotype, sequence-discrete population (SDP), and strain levels, but with extensive overlaps, indicating that the diversity of microbial community among A. cerana populations is driven by nestedness. Pollen diets were significantly correlated with both the composition and function of the gut microbiome. Core bacteria, Gilliamella and Lactobacillus Firm-5, showed antagonistic turnovers and contributed to the enrichment in carbohydrate transport and metabolism. By feeding and inoculation bioassays, we confirmed that the variations in pollen polysaccharide composition contributed to the trade-off of these core bacteria. Progressive change, i.e., nestedness, is the foundation of gut microbiome evolution among the Asian honeybee. Such a transition during the co-diversification of gut microbiomes is affected by environmental factors, diets in general, and pollen polysaccharides in particular.

4.
Microbiome ; 10(1): 69, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35501925

ABSTRACT

BACKGROUND: The spread of antibiotic resistance genes (ARGs) has been of global concern as one of the greatest environmental threats. The gut microbiome of animals has been found to be a large reservoir of ARGs, which is also an indicator of the environmental antibiotic spectrum. The conserved microbiota makes the honeybee a tractable and confined ecosystem for studying the maintenance and transfer of ARGs across gut bacteria. Although it has been found that honeybee gut bacteria harbor diverse sets of ARGs, the influences of environmental variables and the mechanism driving their distribution remain unclear. RESULTS: We characterized the gut resistome of two closely related honeybee species, Apis cerana and Apis mellifera, domesticated in 14 geographic locations across China. The composition of the ARGs was more associated with host species rather than with geographical distribution, and A. mellifera had a higher content of ARGs in the gut. There was a moderate geographic pattern of resistome distribution, and several core ARG groups were found to be prevalent among A. cerana samples. These shared genes were mainly carried by the honeybee-specific gut members Gilliamella and Snodgrassella. Transferrable ARGs were frequently detected in honeybee guts, and the load was much higher in A. mellifera samples. Genomic loci of the bee gut symbionts containing a streptomycin resistance gene cluster were nearly identical to those of the broad-host-range IncQ plasmid, a proficient DNA delivery system in the environment. By in vitro conjugation experiments, we confirmed that the mobilizable plasmids could be transferred between honeybee gut symbionts by conjugation. Moreover, "satellite plasmids" with fragmented genes were identified in the integrated regions of different symbionts from multiple areas. CONCLUSIONS: Our study illustrates that the gut microbiota of different honeybee hosts varied in their antibiotic resistance structure, highlighting the role of the bee microbiome as a potential bioindicator and disseminator of antibiotic resistance. The difference in domestication history is highly influential in the structuring of the bee gut resistome. Notably, the evolution of plasmid-mediated antibiotic resistance is likely to promote the probability of its persistence and dissemination. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bees , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Plasmids/genetics
5.
Microbiol Spectr ; 10(2): e0210521, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35416715

ABSTRACT

An in-depth understanding of microbial function and the division of ecological niches requires accurate delineation and identification of microbes at a fine taxonomic resolution. Microbial phylotypes are typically defined using a 97% small subunit (16S) rRNA threshold. However, increasing evidence has demonstrated the ubiquitous presence of taxonomic units of distinct functions within phylotypes. These so-called sequence-discrete populations (SDPs) have used to be mainly delineated by disjunct sequence similarity at the whole-genome level. However, gene markers that could accurately identify and quantify SDPs are lacking in microbial community studies. Here, we developed a pipeline to screen single-copy protein-coding genes that could accurately characterize SDP diversity via amplicon sequencing of microbial communities. Fifteen candidate marker genes were evaluated using three criteria (extent of sequence divergence, phylogenetic accuracy, and conservation of primer regions) and the selected genes were subject to test the efficiency in differentiating SDPs within Gilliamella, a core honeybee gut microbial phylotype, as a proof-of-concept. The results showed that the 16S V4 region failed to report accurate SDP diversities due to low taxonomic resolution and changing copy numbers. In contrast, the single-copy genes recommended by our pipeline were able to successfully quantify Gilliamella SDPs for both mock samples and honeybee guts, with results highly consistent with those of metagenomics. The pipeline developed in this study is expected to identify single-copy protein coding genes capable of accurately quantifying diverse bacterial communities at the SDP level. IMPORTANCE Microbial communities can be distinguished by discrete genetic and ecological characteristics. These sequence-discrete populations are foundational for investigating the composition and functional structures of microbial communities at high resolution. In this study, we screened for reliable single-copy protein-coding marker genes to identify sequence-discrete populations through our pipeline. Using marker gene amplicon sequencing, we could accurately and efficiently delineate the population diversity in microbial communities. These results suggest that single copy protein-coding genes can be an accurate, quantitative, and economical alternative for characterizing population diversity. Moreover, the feasibility of a gene as marker for any bacterial population identification can be quickly evaluated by the pipeline proposed here.


Subject(s)
Microbiota , Animals , Bacteria/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
6.
Insect Sci ; 29(1): 259-275, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33811731

ABSTRACT

The gut bacteria of honey bee recognized as a mutualistic partner with the insect host might have originated from a free-living or parasitic lifestyle. However, little is known about the genomic features underlying this lifestyle transition. Here we compared the genomes of bee gut bacteria Apibacter with their close relatives living in different lifestyles. We found that despite general reduction in the Apibacter genome, genes involved in amino acid synthesis and monosaccharide detoxification were retained, which is putatively beneficial to the host. Interestingly, the microaerobic Apibacter species specifically acquired genes encoding for the nitrate respiration (NAR). These together with nitrate transporter and enzymatic cofactor synthesis genes were found clustered in the genomes. The NAR system is also conserved in the cohabitating bee gut microbe Snodgrassella, although with a different structure. This convergence suggests a key role of respiratory nitrate reduction for microaerophilic microbiomes to colonize bee gut epithelium. Genes involved in lipid, histidine degradation were found partially or completely lost in Apibacter. Particularly, genes encoding for the conversion to the toxic intermediates in phenylacetate degradation, as well as other potential virulence factors, are specifically lost in Apibacter group. Antibiotic resistance genes are only sporadically distributed among Apibacter species, but are prevalent in their relatives, which may be related to the remotely living feature and less exposure to antibiotics of their bee hosts. Collectively, this study advanced our knowledge of genomic features specialized to bee gut symbionts.


Subject(s)
Microbiota , Symbiosis , Animals , Bacteria , Bees , Biological Evolution , Genomics
7.
Microbiome ; 9(1): 225, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34784973

ABSTRACT

BACKGROUND: Honey bee gut microbiota transmitted via social interactions are beneficial to the host health. Although the microbial community is relatively stable, individual variations and high strain-level diversity have been detected across honey bees. Although the bee gut microbiota structure is influenced by environmental factors, the heritability of the gut members and the contribution of the host genetics remains elusive. Considering bees within a colony are not readily genetically identical due to the polyandry of the queen, we hypothesize that the microbiota structure can be shaped by host genetics. RESULTS: We used shotgun metagenomics to simultaneously profile the microbiota and host genotypes of bees from hives of four different subspecies. Gut composition is more distant between genetically different bees at both phylotype- and "sequence-discrete population" levels. We then performed a successive passaging experiment within colonies of hybrid bees generated by artificial insemination, which revealed that the microbial composition dramatically shifts across batches of bees during the social transmission. Specifically, different strains from the phylotype of Snodgrassella alvi are preferentially selected by genetically varied hosts, and strains from different hosts show a remarkably biased distribution of single-nucleotide polymorphism in the Type IV pili loci. Genome-wide association analysis identified that the relative abundance of a cluster of Bifidobacterium strains is associated with the host glutamate receptor gene specifically expressed in the bee brain. Finally, mono-colonization of Bifidobacterium with a specific polysaccharide utilization locus impacts the alternative splicing of the gluR-B gene, which is associated with an increased GABA level in the brain. CONCLUSIONS: Our results indicated that host genetics influence the bee gut composition and suggest a gut-brain connection implicated in the gut bacterial strain preference. Honey bees have been used extensively as a model organism for social behaviors, genetics, and the gut microbiome. Further identification of host genetic function as a shaping force of microbial structure will advance our understanding of the host-microbe interactions. Video abstract.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Bees , Bifidobacterium/genetics , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study
8.
Microbiome ; 9(1): 216, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34732245

ABSTRACT

BACKGROUND: Microbial acquisition and development of the gut microbiota impact the establishment of a healthy host-microbes symbiosis. Compared with other animals, the eusocial bumblebees and honeybees possess a simple, recurring, and similar set of gut microbiota. However, all bee gut phylotypes have high strain-level diversity. Gut communities of different bee species are composed of host-specific groups of strains. The variable genomic regions among strains of the same species often confer critical functional differences, such as carbon source utilization, essential for the natural selection of specific strains. The annual bumblebee colony founded by solitary queens enables tracking the transmission routes of gut bacteria during development stages. RESULTS: Here, we first showed the changes in the microbiome of individual bumblebees across their holometabolous life cycle. Some core gut bacteria persist throughout different stages of development. Gut microbiota of newly emerged workers always resembles those of their queens, suggesting a vertical transmission of strains from queens to the newborn workers. We then follow the dynamic changes in the gut community by comparing strain-level metagenomic profiles of queen-worker pairs longitudinally collected across different stages of the nest development. Species composition of both queen and worker shifts with the colony's growth, and the queen-to-worker vertical inheritance of specific strains was identified. Finally, comparative metagenome analysis showed clear host-specificity for microbes across different bee hosts. Species from honeybees often possess a higher level of strain variation, and they also exhibited more complex gene repertoires linked to polysaccharide digestion. Our results demonstrate bacterial transmission events in bumblebee, highlighting the role of social interactions in driving the microbiota composition. CONCLUSIONS: By the community-wide metagenomic analysis based on the custom genomic database of bee gut bacteria, we reveal strain transmission events at high resolution and the dynamic changes in community structure along with the colony development. The social annual life cycle of bumblebees is key for the acquisition and development of the gut microbiota. Further studies using the bumblebee model will advance our understanding of the microbiome transmission and the underlying mechanisms, such as strain competition and niche selection. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Animals , Bacteria/genetics , Bees , Gastrointestinal Microbiome/genetics , Life Cycle Stages , Metagenomics
9.
Int J Syst Evol Microbiol ; 70(1): 165-171, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31560340

ABSTRACT

The honey bee gut microbiota contains many bacterial lineages that are specific to this ecosystem. Apis cerana, raised across the Asian continent, is of great significance to the maintenance and development of ecology and agriculture in Asia. Here, we report the isolation and characterization of strain QZS01T from the gut of Apis cerana from Pingwu County, Sichuan Province, PR China. The results of phylogenetic analysis based on 16S rRNA sequences showed that strain QZS01T forms a monophyletic group together with clone sequences derived from variable insect hosts, and it shows 92% sequence similarity to its closest relative, Pseudomonas knackmussii. Strain QZS01T possesses a reduced genome (3.3 Mbp; G+C content, 38.05 mol%) compared to all other Pseudomonas species, and the whole-genome based phylogenetic reconstruction showed that strain QZS01T represents a novel genus within the family Pseudomonadaceae. Strain QZS01T is a Gram-stain-negative facultative anaerobe. It grows on brain heart infusion agar and the energy sources utilized for growth are very limited. Based on the results of genotypic and phenotypic analyses, we propose a novel genus and species, Entomomonas moraniae gen. nov., sp. nov., with the type strain QZS01T (=CGMCC 1.13498T=KCTC 62495T).


Subject(s)
Bees/microbiology , Gastrointestinal Tract/microbiology , Genome, Bacterial , Phylogeny , Pseudomonadaceae/classification , Animals , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Pseudomonadaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
J Agric Food Chem ; 62(19): 4454-65, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24735012

ABSTRACT

ε-Poly-L-lysine (ε-PL), a naturally occurring amino acid homopolymer, has been widely used as a food preservative. However, its antimicrobial mechanism has not been fully understood. This study investigated the antimicrobial mode of action of ε-PL on a yeast, Saccharomyces cerevisiae. When treated with ε-PL at the concentration of 500 µg/mL, cell mortality was close to 100% and the phospholipid bilayer curvature, pores, and micelles on the surface of S. cerevisiae were clearly observed by scanning electron microscopy (SEM). At the level of 200 µg/mL, ε-PL significantly inhibited the cell growth of S. cerevisiae. When treated with 50 µg/mL ε-PL, the yeast cell was able to grow but the cell cycle was prolonged. A significant increase in cell membrane permeability was induced by ε-PL at higher concentrations. Metabolomics analysis revealed that the ε-PL stress led to the inhibition of primary metabolic pathways through the suppression of the tricarboxylic acid cycle and glycolysis. It is therefore proposed that the microbiostatic effect of ε-PL at lower levels on S. cerevisiae is achieved by inducing intracellular metabolic imbalance via disruption of cell membrane functions. Moreover, the results suggested that the antimicrobial mechanism of ε-PL on S. cerevisiae can in fact change from microbiostatic to microbicidal when the concentration of ε-PL increased, and the mechanisms of these two modes of action were completely different.


Subject(s)
Antifungal Agents/pharmacology , Polylysine/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Down-Regulation/drug effects , Metabolic Networks and Pathways/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...