Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Acta Trop ; 255: 107236, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692450

ABSTRACT

Endometritis reduces reproductive effectiveness and leads to significant financial losses in the dairy sector. Luteolin is a natural phyto-flavonoid compound with many biological activities. However, the therapeutic effect of Luteolin against lipopolysaccharides (LPS)-induced endometritis has not yet been explored. A total of eighty female Kunming mice were randomly assigned into four treatment groups (n = 20). Following a successful initiation of the endometritis model by LPS, Luteolin was intraperitoneally administered three times, at six-hour intervals between each injection in the Luteolin groups. The histopathological findings revealed that Luteolin significantly alleviated uterine injury induced by LPS. Moreover, Luteolin suppressed the synthesis of pro-inflammatory mediators [interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α] while promoting the synthesis of an anti-inflammatory mediator (IL-10) altered by LPS. Furthermore, Luteolin significantly mitigated the LPS-induced oxidative stress by scavenging malondialdehyde (MDA) and reactive oxygen species (ROS), accumulation and boosting the capacity of antioxidant enzyme activities such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (Gpx1) in the uterine tissue of mice. Additionally, injection of Luteolin markedly increased the expression of Toll-like receptors (TLR) 4 both at mRNA and protein levels under LPS stimulation. Western blotting and ELISA findings demonstrated that Luteolin suppressed the activation of the NF-κB pathway in response to LPS exposure in the uterine tissue of mice. Notably, Luteolin enhanced the anti-oxidant defense system by activating the Nrf2 signaling pathway under LPS exposure in the uterine tissue of mice. Conclusively, our findings demonstrated that Luteolin effectively alleviated LPS-induced endometritis via modulation of TLR4-associated Nrf2 and NF-κB signaling pathways.


Subject(s)
Lipopolysaccharides , Luteolin , Oxidative Stress , Luteolin/pharmacology , Luteolin/therapeutic use , Animals , Female , Mice , Oxidative Stress/drug effects , Endometritis/drug therapy , Escherichia coli , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Disease Models, Animal , Reactive Oxygen Species/metabolism , Uterus/drug effects , Uterus/pathology , Antioxidants/pharmacology , NF-kappa B/metabolism , Inflammation/drug therapy , Animals, Outbred Strains
2.
Microb Pathog ; 191: 106660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657710

ABSTRACT

Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.


Subject(s)
Apoptosis , Cattle Diseases , Endometritis , Escherichia coli Infections , Escherichia coli , Oxidative Stress , Up-Regulation , Uterus , Cattle , Animals , Female , Endometritis/veterinary , Endometritis/microbiology , Endometritis/pathology , Endometritis/metabolism , Cattle Diseases/microbiology , Cattle Diseases/metabolism , Cattle Diseases/immunology , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Inflammation , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Inflammation Mediators/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
3.
Cell Mol Life Sci ; 81(1): 155, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538986

ABSTRACT

The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.


Subject(s)
Prostatic Hyperplasia , Animals , Humans , Male , Mice , Androgens/metabolism , Mammals/metabolism , Mitochondria/metabolism , Prostate/metabolism , Prostatic Hyperplasia/metabolism , Reactive Oxygen Species/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction
4.
Food Funct ; 14(14): 6730-6744, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37409688

ABSTRACT

Endometriosis is an estrogen-dependent chronic inflammatory gynecological disease defined by the presence of endometrial glands and mesenchyme outside the uterine cavity, named ectopic endometrium. Recent studies showed that endometriosis is associated with hormone imbalance, inflammation and oxidative stress. As the main component of vanilla bean extract, vanillin is widely used as a flavoring agent in the food, pharmaceutical, and cosmetic industries. It is known for its anti-inflammatory, antibacterial, and antitumor properties, but its therapeutic efficacy in endometriosis has not been studied. In this study, we evaluated the roles of vanillin in this disease using an induced endometriotic mouse model. The results showed that vanillin significantly inhibited the growth of endometrial lesions. Compared with the control group, the weight and volume of lesions were reduced considerably in the vanillin-treated group, showing its fantastic ability to inhibit cell proliferation and promote apoptosis. In addition, in the treatment group, mRNA expression of the pro-inflammatory cytokines Tnfa, Infg, Il1b, and Il6 was reduced, the number of macrophages and neutrophils was decreased, and the NF-κB signaling pathway was inhibited, indicating that vanillin suppressed the inflammatory response in the ectopic endometrium. Besides, we found that the intensity of tissue reactive oxygen species (ROS) was significantly lower, and mitochondrial complex IV expression was reduced in the vanillin-treated group. Meanwhile, treatment of the immortalized human endometriotic epithelial cell line (11Z) with vanillin resulted in the downregulation of cyclin genes that drive the cell proliferation process, inhibited cell proliferation, promoted apoptosis, and downregulated the expression of LPS-induced inflammatory cytokines. Most importantly, our data showed that the vanillin treatment had only minimal effects on the eutopic endometrium with respect to the pregnancy process, indicating its safety to be used in treating endometriosis in adults. In conclusion, our data suggest that vanillin has potential therapeutic properties for endometriosis as a regulatory molecule of cell proliferation, apoptosis, inflammation, and oxidative stress.


Subject(s)
Endometriosis , Adult , Female , Animals , Mice , Humans , Endometriosis/drug therapy , Endometriosis/genetics , Endometriosis/metabolism , Antioxidants/pharmacology , Inflammation/drug therapy , Pharmaceutical Preparations , Anti-Inflammatory Agents/pharmacology
5.
FASEB J ; 37(7): e22983, 2023 07.
Article in English | MEDLINE | ID: mdl-37249327

ABSTRACT

In mammals, the endometrium undergoes dynamic changes in response to estrogen and progesterone to prepare for blastocyst implantation. Two distinct types of endometrial epithelial cells, the luminal (LE) and glandular (GE) epithelial cells play different functional roles during this physiological process. Previously, we have reported that Notch signaling plays multiple roles in embryo implantation, decidualization, and postpartum repair. Here, using the uterine epithelial-specific Ltf-iCre, we showed that Notch1 signaling over-activation in the endometrial epithelium caused dysfunction of the epithelium during the estrous cycle, resulting in hyper-proliferation. During pregnancy, it further led to dysregulation of estrogen and progesterone signaling, resulting in infertility in these animals. Using 3D organoids, we showed that over-activation of Notch1 signaling increased the proliferative potential of both LE and GE cells and reduced the difference in transcription profiles between them, suggesting disrupted differentiation of the uterine epithelium. In addition, we demonstrated that both canonical and non-canonical Notch signaling contributed to the hyper-proliferation of GE cells, but only the non-canonical pathway was involved with estrogen sensitivity in the GE cells. These findings provided insights into the effects of Notch1 signaling on the proliferation, differentiation, and function of the uterine epithelium. This study demonstrated the important roles of Notch1 signaling in regulating hormone response and differentiation of endometrial epithelial cells and provides an opportunity for future studies in estrogen-dependent diseases, such as endometriosis.


Subject(s)
Progesterone , Uterus , Animals , Female , Mice , Pregnancy , Cell Proliferation , Embryo Implantation/physiology , Endometrium/metabolism , Epithelium/metabolism , Estrogens/pharmacology , Estrogens/metabolism , Progesterone/pharmacology , Progesterone/metabolism , Uterus/metabolism
6.
Reprod Sci ; 30(6): 1867-1877, 2023 06.
Article in English | MEDLINE | ID: mdl-36581776

ABSTRACT

The uterine luminal epithelium, glandular epithelium, and stromal cells are vital for the establishment of pregnancy. Previously studies have shown various methods to isolate mouse uterine epithelium and stromal cells, including laser capture microdissection (LCM), enzyme digestion, and immunomagnetic beads. Despite the importance of the endometrial epithelium as the site of implantation and nutritional support for the conceptus, there is no isolated method to separate the luminal epithelium and glandular epithelium. Here, we establish a novel enzyme-based way to separate two types of epithelium and keep their viability. In this article, we analyzed their purity by mRNA level, immunostaining, and transcriptome analysis. Our isolation method revealed several unstudied luminal and glandular epithelial markers in transcriptome analysis. We further demonstrated the viability of the isolated epithelium by 2D and 3D cultures. The results showed that we successfully separated the endometrial luminal epithelium and glandular epithelium. We also provided an experimental model for the following study of the physiological function of the different parts of the uterus and related diseases.


Subject(s)
Endometrium , Uterus , Pregnancy , Mice , Animals , Female , Endometrium/physiology , Embryo Implantation/physiology , Epithelium , RNA, Messenger
7.
Ecotoxicol Environ Saf ; 241: 113826, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36068753

ABSTRACT

Endometriosis is a chronic, inflammatory, estrogen-dependent gynecological disease characterized by the growth of endometrial stromal cells and glands outside the uterine cavity in response to hormones, which commonly occurs in reproductive-age women. Zearalenone (ZEA) is a toxic metabolite produced by Fusarium, which acts as estrogen activity because of the similarity of its structure to estrogen. In this study, we used an endometriosis mouse model: 15 days after ovariectomy, endometrial fragments were sutured on the pelvic wall, and exogenous estrogen was supplied using an estrogen-releasing silicone tube embedded subcutaneously. Mice were treated with different doses of ZEA by gavage for 21 days. The results show that ZEA significantly inhibited the growth of ectopic endometrium in a dose-dependent manner. The proliferation of cells decreased while apoptosis increased in the ectopic tissues of ZEA-treated mice compared to the vehicle group. The expression of estrogen receptor-α and its downstream targets MUC1 and p-AKT decreased, indicating an impaired estrogen signaling activity by ZEA treatment. In addition, the decreased expression of pro-inflammatory cytokine Tnf-α, Il-1ß, and Il-6, the lower number of macrophages and neutrophils cells, and the inhibited NF-κB signaling pathway suggest the inflammatory response in the ectopic endometrium was also suppressed by ZEA treatment. However, when the exogenous estrogen supply is removed, ZEA, in turn, plays an estrogen-like role that promotes cell proliferation in the ectopic endometrium. In summary, our data suggest ZEA acts as an antagonist in endometriotic tissue when estrogen is sufficient but turns to estrogenic activity in the absence of estrogen in the development of endometriosis. ZEA also inhibits ectopic tissue growth by inhibiting inflammatory response in the endometriosis model.


Subject(s)
Endometriosis , Zearalenone , Animals , Endometriosis/drug therapy , Endometriosis/metabolism , Endometrium/metabolism , Estrogens/metabolism , Estrogens/toxicity , Female , Humans , Mice , Signal Transduction , Zearalenone/toxicity
8.
Biol Reprod ; 107(4): 977-983, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35835555

ABSTRACT

The Notch signaling pathway is required for reproductive success. This pathway activates its transcriptional effector, recombination signal binding protein for immunoglobulin kappa J (Rbpj), to induce transcription of its target genes. This signaling pathway is required for successful decidualization, implantation, and uterine repair following parturition. To identify the compartmental specific roles of the Notch signaling pathway in the establishment of pregnancy, we generated epithelial and decidual stromal cell specific knockouts of Rbpj utilizing lactoferrin iCre and Prl8A2 iCre, respectively. Both conditional knockout mouse models were fertile. The Rbpj epithelial knockout mice displayed 27% resorption sites at E15.5, but this did not significantly impact the number of live born pups compared with controls. In addition, the Rbpj epithelial knockout mice displayed increased estrogen signaling in their stromal compartment. Given that both mouse models exhibited fertility comparable to control animals, the epithelial and stromal specific nature of the iCre recombinases utilized, and previously published Rbpj total uterine knockout mouse models, we conclude that Notch effector Rbpj signaling is required at the initiation of pregnancy to support decidualization in stromal cells, but that Rbpj is not required in the epithelial compartment nor is it required for post-implantation pregnancy success.


Subject(s)
Immunoglobulin J Recombination Signal Sequence-Binding Protein , Receptors, Notch , Animals , Carrier Proteins/metabolism , Estrogens , Female , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Immunoglobulins/genetics , Immunoglobulins/metabolism , Lactoferrin/metabolism , Mice , Mice, Knockout , Pregnancy , Receptors, Notch/genetics , Receptors, Notch/metabolism , Recombinases/genetics , Recombinases/metabolism , Recombination, Genetic , Signal Transduction/physiology , Stromal Cells/metabolism
9.
Front Cell Dev Biol ; 9: 702590, 2021.
Article in English | MEDLINE | ID: mdl-34434930

ABSTRACT

High level of uric acid (UA) is the major origin of gout, and is highly associated with various pregnant complications, such as preeclampsia and gestational diabetes. However, UA's level and role in the very early stage of pregnancy has not been uncovered. This study aims to investigate the relevance of serum UA and decidualization, an essential process for the establishment and maintenance of pregnancy in women and mice during the early stage of pregnancy. In this study, we first proved that expression level of UA synthase xanthine dehydrogenase (XDH) is highly increased along with decidualization of endometrial stromal cells in both in vitro and in vivo models. Furthermore, serum and endometrial levels of UA are higher in mice with decidualized uterin horn and in vitro decidualized stromal cells. The existence of monosodium urate (MSU) crystal was also confirmed by immunostaining. Next, the roles of MSU on decidualization were explored by both in vitro and in vivo models. Our data shows MSU crystal but not UA enhances the decidualization response of endometrial stromal cells, via the upregulation of inflammatory genes such Ptgs2 and Il11. inhibiting of Cox-2 activity abolishes MSU crystal induced higher expression of decidualization marker Prl8a2. At last, in women, we observed enriched expression of XDH in decidua compare to non-decidualized endometrium, the serum level of UA is significantly increased in women in very early stage of pregnancy, and drop down after elective abortion. In summary, we observed an increased serum UA level in the early stage of women's pregnancy, and proved that the increased level of UA results from the expressed XDH in decidualizing endometrium of both human and mouse, leading to the formation of MSU crystal. MSU crystal can enhance the decidualization response via inflammatory pathways. Our study has uncovered the association between UA, MSU, and decidualization during the early stage of pregnancy.

10.
Biofactors ; 47(5): 852-864, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34320265

ABSTRACT

Fibrosis is a pathological process characterized by abnormal activation of fibroblasts with increased synthesis of extracellular matrix components, including collagens. It may lead to loss of proper tissue architecture and organ function in clinical diseases such as systemic sclerosis and liver fibrosis. Excess accumulation of collagens is considered the primary indicator of fibrosis. Notch signaling has been reported to be involved in the fibrosis of many different organs, including the liver. Our previous study showed that the uterine-specific over-activation of canonical Notch1 signaling in the mouse uterus (Pgrcre/+ Rosa26N1ICD/+ , OEx) results in complete infertility as a consequence of multiple developmental and physiological defects, together with increased collagen accumulation evidenced by Masson's staining. In this study, we further detected expressions of all 44 collagen genes in these Notch1 gain-of-function transgenic mice and found that 18 collagens have been largely affected. In another aspect, using an intrauterine adhesion model (IUA), we mimicked fibrosis in the mouse uterine. The results suggested that Notch receptors were upregulated only 3 days after induction, and most of the fibril-forming collagen began to upregulate 6 days after the surgery. Furthermore, when induced IUA in the N1ICD-OEx mice, the expression of collagens and fibrosis levels were significantly enhanced. At last, as a Notch signaling inhibitor, the γ-secretase inhibitor N-[N-(3,5-difl uorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) pretreatment could alleviate the expression of collagens and the symptoms of fibrosis. These results demonstrate that Notch signaling may play a role in upregulating collagens expression in endometrial fibrosis and might be a potential target of fibrosis therapy in the endometrium.


Subject(s)
Collagen/genetics , Collagen/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction/genetics , Uterus/pathology , Animals , Disease Models, Animal , Female , Fibrosis , Mice , Mice, Transgenic , Uterus/metabolism
11.
Biol Reprod ; 104(3): 539-547, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33284968

ABSTRACT

The endometrium undergoes a pregnancy-delivery-repair cycle multiple times during the reproductive lifespan in females. Decidualization is one of the critical events for the success of this essential process. We have previously reported that Notch1 is essential for artificial decidualization in mice. However, in a natural pregnancy, the deletion of Notch1 (PgrCre/+Notch1f/f, or Notch1d/d) only affects female fertility in the first 30 days of a 6-month fertility test, but not the later stages. In the present study, we undertook a closer evaluation at the first pregnancy of these mice to attempt to understand this puzzling phenomenon. We observed a large number of pregnancy losses in Notch1d/d mice in their first pregnancy, which led to the subfertility observed in the first 30 days of the fertility test. We then demonstrated that the initial pregnancy loss is a consequence of impaired decidualization. Furthermore, we identified a group of genes that contribute to Notch1 regulated decidualization in a natural pregnancy. Gene ontogeny analysis showed that these differentially expressed genes in the natural pregnancy are involved in cell-cell and cell-matrix interactions, different from genes that have been previously identified from the artificial decidualization model, which contribute to cell proliferation and apoptosis. In summary, we determined that Notch1 is essential for normal decidualization in the mouse uterus only in the first pregnancy but not in subsequent ones.


Subject(s)
Decidua/physiology , Gene Expression Regulation/physiology , Pregnancy, Animal , Receptor, Notch1/metabolism , Abortion, Veterinary/genetics , Animals , Cell Proliferation , Embryo Implantation/genetics , Female , Mice , Mice, Knockout , Pregnancy , Pregnancy, Animal/genetics , Pregnancy, Animal/metabolism , Receptor, Notch1/genetics , Signal Transduction , Transcriptome
12.
Sci Signal ; 13(646)2020 08 25.
Article in English | MEDLINE | ID: mdl-32843542

ABSTRACT

Embryo implantation involves a sterile inflammatory reaction that is required for the invasion of the blastocyst into the decidua. Adenosine triphosphate (ATP) released from stressed or injured cells acts as an important signaling molecule to regulate many key physiological events, including sterile inflammation. We found that the amount of ATP in the uterine luminal fluid of mice increased during the peri-implantation period, and this depended on the presence of an embryo. We further showed that the release of ATP from receptive epithelial cells was likely stimulated by lactate released from the blastocyst through connexin hemichannels. The ATP receptor P2y2 was present on uterine epithelial cells during the preimplantation period and increased in the stromal cells during the time at which decidualization began. Pharmacological inhibition of P2y2 compromised decidualization and implantation. ATP-P2y2 signaling stimulated the phosphorylation of Stat3 in uterine luminal epithelial cells and the expression of early growth response 1 (Egr1) and prostaglandin-endoperoxide synthase 2 (Ptgs2, also known as Cox-2), all of which are required for decidualization and/or implantation, in stromal cells. Short exposure to high concentrations of ATP promoted decidualization of primary stromal cells, but longer exposures or lower ATP concentrations did not. The expression of genes encoding ATP-degrading ectonucleotidases increased in the decidua during the peri-implantation period, suggesting that they may limit the duration of the ATP signal. Together, our results indicate that the blastocyst-induced release of ATP from uterine epithelial cells during the peri-implantation period may be important for the initiation of stromal cell decidualization.


Subject(s)
Adenosine Triphosphate/metabolism , Blastocyst/metabolism , Decidua/metabolism , Epithelial Cells/metabolism , Receptors, Purinergic P2Y2/metabolism , Animals , Blastocyst/cytology , Cell Line, Tumor , Cells, Cultured , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Embryo Implantation , Female , Gene Expression Regulation, Developmental , Humans , Mice , Receptors, Purinergic P2Y2/genetics , Signal Transduction , Stromal Cells/metabolism , Uterus/cytology , Uterus/metabolism
13.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-32119078

ABSTRACT

CONTEXT: NOTCH signaling is activated in endometriotic lesions, but the exact mechanisms remains unclear. IL-6, which is increased in the peritoneal fluid of women with endometriosis, induces NOTCH1 through E-proteins including E2A and HEB in cancer. OBJECTIVE: To study the role of E-proteins in inducing NOTCH1 expression under the regulation of IL-6 in endometriosis. SETTING AND DESIGN: The expression of E-proteins and NOTCH1 was first investigated in endometrium of women with endometriosis and the baboon model of endometriosis. Regulation of E-proteins and NOTCH1 expression was examined after IL-6 stimulation and siRNA mediated inhibition of E2A or/and HEB in human endometriotic epithelial cells (12Z) in vitro, and subsequently following IL-6 treatment in the mouse model of endometriosis in vivo. RESULTS: E2A, HEB, and NOTCH1 were significantly upregulated in glandular epithelium (GE) of ectopic endometrium compared to eutopic endometrium in both women and the baboon model. IL-6 treatment upregulated the expression of NOTCH1 together with E2A and HEB in 12Z cells. Small interfering RNA inhibition of E2A and HEB or HEB alone decreased NOTCH1 expression. Binding efficiency of both E2A and HEB was significantly higher at the binding sites on the human NOTCH1 promoter after IL-6 treatment. Finally, IL-6 treatment resulted in a significantly increased number of endometriotic lesions along with increased expression of E2A, HEB, and NOTCH1 in GE of the lesions compared with the vehicle group in an endometriosis mouse model. CONCLUSIONS: IL-6 induced NOTCH1 expression is mediated by E-proteins in the ectopic GE cells, which may promote endometriotic lesion development.


Subject(s)
Endometriosis/genetics , Interleukin-6/pharmacology , Peritoneal Diseases/genetics , Receptor, Notch1/genetics , Transcription Factors/physiology , Adolescent , Adult , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , Case-Control Studies , Cells, Cultured , Endometriosis/metabolism , Endometriosis/pathology , Endometrium/drug effects , Endometrium/metabolism , Endometrium/pathology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Expression Regulation/drug effects , Humans , Interleukin-6/physiology , Mice , Middle Aged , Papio , Peritoneal Diseases/metabolism , Peritoneal Diseases/pathology , Receptor, Notch1/drug effects , Receptor, Notch1/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/metabolism , Young Adult
14.
Sheng Li Xue Bao ; 72(1): 91-104, 2020 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-32099987

ABSTRACT

The onset of tight connection between embryo and uterine endometrium terms "embryo implantation", the beginning and a key step of mammalian pregnancy. Defective implantation leads to failure of pregnancy and infertility. In recent years, along with the technological advance, researches on embryo implantation have achieved great advances. This paper reviews the key research achievements that have been reached in the last decade in the field of embryo implantation, focusing on the changes, roles, and underlying mechanisms of both luminal and glandular epithelia during implantation process, as well as their interactions with embryo trophoblast cells and endometrial stromal cells.


Subject(s)
Embryo Implantation , Endometrium/physiology , Animals , Female , Pregnancy , Stromal Cells/physiology , Trophoblasts/physiology , Uterus/physiology
15.
Nat Commun ; 10(1): 3554, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391455

ABSTRACT

ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue.


Subject(s)
Cell Transformation, Neoplastic/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , DNA-Binding Proteins/genetics , Endometrial Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Nuclear Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Transcription Factors/genetics , Animals , Cell Line , Cell Movement/genetics , Chromatin/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Endometrial Neoplasms/pathology , Endometrium/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Haploinsufficiency , Humans , Loss of Function Mutation , Mice , Mice, Transgenic , Myometrium/pathology , Neoplasm Invasiveness/genetics , Nuclear Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism
16.
Biol Reprod ; 100(6): 1492-1504, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30770532

ABSTRACT

Autoimmune Regulator (AIRE) regulates central immune tolerance by inducing expression of tissue-restricted antigens in thymic medullary epithelial cells, thereby ensuring elimination of autoreactive T cells. Aire mutations in humans and targeted Aire deletion in mice result in multiorgan autoimmune disease, known in humans as autoimmune polyglandular syndrome type 1 (APS-1). APS-1 is characterized by the presence of adrenal insufficiency, chronic mucosal candidiasis, and/or hypoparathyroidism. Additionally, females often present with gonadal insufficiency and infertility. Aire-deficiency (KO) in mice results in oophoritis and age-dependent depletion of follicular reserves. Here, we found that while the majority of young 6-week-old Aire-KO females had normal follicular reserves, mating behavior, and ovulation rates, 50% of females experienced embryonic loss between gestation day (GD) 5.5 and 7.5 that could not be attributed to insufficient progesterone production or decidualization. The quality of GD0.5 embryos recovered from Aire KO mice was reduced, and when cultured in vitro, embryos displayed limited developmental capacity in comparison to those recovered from wild-type (WT) mice. Further, embryos flushed from Aire KO dams at GD3.5 were developmentally delayed in comparison to WT controls and had reduced trophoblastic outgrowth in vitro. We conclude that AIRE does not play a direct role in uterine decidualization. Rather, reduced fertility of Aire-deficient females is likely due to multiple factors, including oophoritis, delayed preimplantation development, and compromised implantation. These effects may be explained by autoimmune targeting of the ovary, embryo, or both. Alternatively, altered embryonic development could be due to a direct role for AIRE in early embryogenesis.


Subject(s)
Embryo Implantation/physiology , Embryonic Development/physiology , Transcription Factors/metabolism , Animals , Female , Mice , Mice, Inbred BALB C , Mice, Knockout , Transcription Factors/genetics , AIRE Protein
17.
Reprod Sci ; 26(6): 774-784, 2019 06.
Article in English | MEDLINE | ID: mdl-30213224

ABSTRACT

During decidualization, endometrial stromal cells differentiate into a secretory phenotype to modulate the uterine microenvironment and promote embryo implantation. This highly metabolic process relies on ovarian steroid receptors and glucose transporters. Canonical Notch signaling is mediated by the transcription factor Recombination Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). Loss of RBPJ in the mouse uterus (Pgrcre/+Rbpjflox/flox; Rbpj c-KO) results in subfertility in part due to an abnormal uterine-embryonic axis during implantation and, as described herein, decidualization failure. Induced in vivo decidualization in Rbpj c-KO mice was impaired with the downregulation of decidual markers and decreased progesterone receptor (Pgr) signaling. Consistent with in vivo mouse data, RBPJ knockdown during in vitro Human uterine fibroblast (HuF) cell decidualization results in the reduced expression of decidual marker genes along with PGR. Expression of the glucose transporter, SLC2A1, was decreased in the RBPJ-silenced HuF cells, which corresponded to decreased Slc2a1 in the secondary decidual zone of Rbpj c-KO mouse uteri. Exogenous administration of pyruvate, which bypasses the need for glucose, rescues PRL expression in RBPJ-deficient HuF cells. In summary, Notch signaling through RBPJ controls both ovarian steroid receptor PGR and glucose transporter SLC2A1 expression during decidualization, and this dysregulation likely contributes to embryo implantation failure.


Subject(s)
Decidua/physiology , Gene Expression Regulation/physiology , Glucose Transporter Type 1/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/physiology , Receptors, Progesterone/genetics , Animals , Cell Line , Decidua/chemistry , Female , Fibroblasts , Glucose Transporter Type 1/analysis , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/deficiency , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Mice , Mice, Knockout , Pyruvic Acid/pharmacology , RNA, Small Interfering/genetics , Receptors, Progesterone/metabolism , Signal Transduction/physiology , Uterus/cytology
18.
FASEB J ; 32(5): 2452-2466, 2018 05.
Article in English | MEDLINE | ID: mdl-29242273

ABSTRACT

Unexplained recurrent pregnancy loss (uRPL) is associated with repeated embryo loss and endometrial repair with elevated endometrial expression of inflammatory cytokines, including IFN-γ. Notch signaling through its transcription factor recombination signal binding protein Jκ (RBPJ) regulates mechanisms including the immune response and repair after tissue injury. Initially, null mutation of RBPJ in the mouse uterus ( Pgrcre/+Rbpjf/f; Rbpj c-KO) results in subfertility, but we have found that these mice become infertile after pregnancy as a result of dysfunctional postpartum uterine repair, including delayed endometrial epithelial and myometrial regeneration. RNA sequencing of postpartum uterine repair sites revealed global up-regulation of inflammatory pathways, including IFN signaling. Consistent with elevated IFN-γ, macrophages were recruited and polarized toward an M1-cytotoxic phenotype, which is associated with preventing repair and promoting further tissue injury. Through embryo transfer experiments, we show that dysfunctional postpartum repair directly impairs future embryo implantation in Rbpj c-KO mice. Last, we clinically correlated our findings from the Rbpj c-KO mouse in women diagnosed with uRPL. Reduced RBPJ in women with uRPL was associated with increased levels of IFN-γ. The data, taken together, indicate that RBPJ regulates inflammation during endometrial repair, which is essential for future pregnancy potential, and its dysregulation may serve as an unidentified contributor to uRPL in women.-Strug, M. R., Su, R.-W., Kim, T. H., Mauriello, A., Ticconi, C., Lessey, B. A., Young, S. L., Lim, J. M., Jeong, J.-W., Fazleabas, A. T. RBPJ mediates uterine repair in the mouse and is reduced in women with recurrent pregnancy loss.


Subject(s)
Abortion, Habitual/metabolism , Endometrium/physiology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Myometrium/physiology , Regeneration , Abortion, Habitual/genetics , Abortion, Habitual/pathology , Adult , Animals , Endometrium/pathology , Female , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Myometrium/pathology , Postpartum Period/genetics , Postpartum Period/metabolism , Pregnancy
19.
Proc Natl Acad Sci U S A ; 113(8): 2300-5, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26858409

ABSTRACT

In mammalian reproduction, implantation is one of the most critical events. Failure of implantation and the subsequent decidualization contribute to more than 75% of pregnancy losses in women. Our laboratory has previously reported that inhibition of Notch signaling results in impaired decidualization in both women and a transgenic mouse model. In this study, we generated a Notch gain-of-function transgenic mouse by conditionally overexpressing the Notch1 intracellular domain (N1ICD) in the reproductive tract driven by a progesterone receptor (Pgr) -Cre. We show that the overexpression of N1ICD in the uterus results in complete infertility as a consequence of multiple developmental and physiological defects, including the absence of uterine glands and dysregulation of progesterone and estrogen signaling by a Recombination Signal Binding Protein Jκ-dependent signaling mechanism. We further show that the inhibition of progesterone signaling is caused by hypermethylation of its receptor Pgr by Notch1 overexpression through the transcription factor PU.1 and DNA methyltransferase 3b (Dnmt3b). We have generated a mouse model to study the consequence of increased Notch signaling in female reproduction and provide the first evidence, to our knowledge, that Notch signaling can regulate epigenetic modification of the Pgr.


Subject(s)
Infertility, Female/etiology , Infertility, Female/metabolism , Receptor, Notch1/metabolism , Receptors, Progesterone/metabolism , Uterus/metabolism , Animals , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Estradiol/metabolism , Female , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/deficiency , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Infertility, Female/genetics , Mice , Mice, Knockout , Mice, Transgenic , Pregnancy , Progesterone/metabolism , Promoter Regions, Genetic , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Notch1/chemistry , Receptor, Notch1/genetics , Receptors, Progesterone/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Up-Regulation , Uterus/pathology
20.
Adv Anat Embryol Cell Biol ; 216: 189-213, 2015.
Article in English | MEDLINE | ID: mdl-26450500

ABSTRACT

Implantation and the establishment of pregnancy are critical for the propagation of the species, but yet remain the limiting steps in human and primate reproduction. Successful implantation requires a competent blastocyst and a receptive endometrium during a specific window of time during the menstrual cycle to initiate the bilateral communication required for the establishment of a successful pregnancy. This chapter provides an overview of these processes and discusses the molecular mechanisms associated with implantation of the blastocyst and decidualization of the uterus in primates.


Subject(s)
Embryo Implantation , Pregnancy/physiology , Primates/physiology , Animals , Decidua/physiology , Endometrium/physiology , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...