Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 41(1): 47, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35109908

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Although the histone deacetylase (HDAC)/transcription factor axis promotes growth in GBM, whether HDACs including HDAC6 are involved in modulating long non-coding RNAs (lncRNAs) to affect GBM malignancy remains obscure. METHODS: Integrative analysis of microarray and RNA-seq was performed to identify lncRNAs governed by HDAC6. Half-life measurement and RNA-protein pull-down assay combined with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis were conducted to identify RNA modulators. The effect of LINC00461 on GBM malignancy was evaluated using animal models and cell proliferation-related assays. Functional analysis of the LINC00461 downstream networks was performed comprehensively using ingenuity pathway analysis and public databases. RESULTS: We identified a lncRNA, LINC00461, which was substantially increased in stem-like/treatment-resistant GBM cells. LINC00461 was inversely correlated with the survival of mice-bearing GBM and it was stabilized by the interaction between HDAC6 and RNA-binding proteins (RBPs) such as carbon catabolite repression-negative on TATA-less (CCR4-NOT) core exoribonuclease subunit 6 and fused in sarcoma. Targeting LINC00461 using azaindolylsulfonamide, an HDAC6 inhibitor, decreased cell-division-related proteins via the lncRNA-microRNA (miRNA)-mRNA networks and caused cell-cycle arrest, thereby suppressing proliferation in parental and drug-resistant GBM cells and prolonging the survival of mice-bearing GBM. CONCLUSIONS: This study sheds light on the role of LINC00461 in GBM malignancy and provides a novel therapeutic strategy for targeting the HDAC6/RBP/LINC00461 axis and its downstream effectors in patients with GBM.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , Histone Deacetylase 6/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Female , Glioblastoma/pathology , Humans , Mice , Mice, Inbred NOD , Transfection
2.
Redox Biol ; 19: 74-80, 2018 10.
Article in English | MEDLINE | ID: mdl-30121389

ABSTRACT

The accumulation of reactive oxygen species (ROS) commonly occurs during normal aging and during some acute/chronic progressive disorders. In order to avoid oxidative damage, scavenging of these radicals is important. Previously, we identified zinc finger protein 179 (Znf179) as a neuroprotector that increases antioxidant enzymes against superoxide radicals. However, the molecular mechanisms involved in the activation and regulation of Znf179 remain unresolved. Here, by performing sequence alignment, bioinformatics analysis, immunoprecipitation using two specific acetyl-lysine antibodies, and treatment with the histone deacetylase (HDAC) inhibitor SAHA, we determined the lysine-specific acetylation of Znf179. Furthermore, we investigated Znf179 interaction with HDACs and revealed that peroxide insult induced a dissociation of Znf179-HDAC1/HDAC6, causing an increase in Znf179 acetylation. Importantly, HDAC inhibition by SAHA further prompted Znf179 hyperacetylation, which promoted Znf179 to form a transcriptional complex with Sp1 and increased antioxidant gene expression against oxidative attack. In summary, the results obtained in this study showed that Znf179 was regulated by HDACs and that Znf179 acetylation was a critical mechanism in the induction of antioxidant defense systems. Additionally, HDAC inhibitors may have therapeutic potential for induction of Znf179 acetylation, strengthening the Znf179 protective functions against neurodegenerative processes.


Subject(s)
Acetylation/drug effects , Antioxidants/pharmacology , DNA-Binding Proteins/metabolism , Histone Deacetylase Inhibitors/pharmacology , Oxidative Stress/drug effects , Up-Regulation/drug effects , Amino Acid Sequence , Animals , Cell Line , DNA-Binding Proteins/chemistry , Humans , Mice , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...