Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 650(Pt B): 1301-1311, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37478747

ABSTRACT

Bismuth molybdate (BMO) is a promising visible-driven photocatalyst and constructing heterojunctions in BMO-based materials is an effective way to enhance photocatalytic performance. In this study, boron-doped graphene quantum dots (BGQDs) were synthesized by one-step pyrolysis and carbonization, followed by the preparation of bismuth molybdate/boron-doped graphene quantum dots (BGQDs/BMO) heterojunction photocatalysts using in-situ growth method. The introduction of BGQDs significantly improved the photocatalytic nitrogen fixation activity under the irradiation of visible light and without scavengers. The highest NH3 yield was achieved with BGQDs/BMO-10, which was 3.48 times higher than pure phase BMO. This improvement was due to the formation of Z-scheme heterojunctions between BGQDs and BMO with the synergistic mechanism of interfacial charge transport and the generation of more protons. This study provides useful guidance for enhancing the visible-light nitrogen fixation performance of BMO materials.

2.
Dalton Trans ; 52(32): 11213-11221, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37522833

ABSTRACT

Electrocatalytic nitrate reduction to ammonia, which removes nitrates from aquatic ecosystems, is a potential alternative to the classical Haber-Bosch process. Nevertheless, the selectivity of ammonia is often affected by the toxic by-product nitrite. Here, the polyhedral-supported Cu nanoparticle binder-free monolithic electrode (Cu-BTC-Cu) is synthesized by the in situ electroreduction of Cu metal-organic framework (Cu-MOF) precursors. The Cu-BTC-Cu displays a high ammonia yield of 4.00 mg h-1 cm-2cat and a faradaic efficiency of 83.8% in 0.05 M K2SO4 (pH = 7), greatly outperforming the rod-supported (Cu-BTEC-Cu) and unsupported (Cu-BDC-Cu) Cu nanoparticle monolithic electrodes. Impressively, the Cu-BTC-Cu can inhibit significantly the release of by-product NO2- and present favourable stability after 10 consecutive cycles. These preeminent properties can be attributed to the polyhedral structure, which enables better dispersion of Cu nanoparticles and brings more active sites. Moreover, the reaction mechanism of Cu-BTC-Cu is analysed by electrochemical in situ characterization and several key intermediates are captured. This work provides new insights into the modification of the electrocatalytic nitrate reduction activity of Cu-based catalysts and ideas for the design of high-efficiency electrodes.

3.
J Colloid Interface Sci ; 646: 547-554, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37210902

ABSTRACT

The polyoxometalates (POMs) have been shown to be highly effective as reactive sites for photocatalytic nitrogen fixation reactions. However, the effect of POMs regulation on catalytic performance has not been reported yet. Herein, a series of composites (SiW9M3@MIL-101(Cr) (M = Fe, Co, V, Mo) and D-SiW9Mo3@MIL-101(Cr), D, Disordered) were obtained by regulating transition metal compositions and arrangement in the POMs. The ammonia production rate of SiW9Mo3@MIL-101(Cr) is much higher than that of other composites, reaching 185.67 µmol·h-1·g-1cat in N2 without sacrificial agents. The structural characterization of composites reveals that the increase of the electron cloud density of W atom in composites is the key to improve the photocatalytic performance. In this paper, the microchemical environment of POMs was regulated by transition metal doping method, thereby promoting the efficiency of photocatalytic ammonia synthesis for the composites, which provides new insights into the design of POM-based photocatalysts with high catalytic activity.

4.
J Colloid Interface Sci ; 638: 263-273, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36738549

ABSTRACT

Nitrogen activation with low-cost, visible-light-driven photocatalysts continues to be a major challenge. Since the discovery of biological nitrogen fixation, multi-component systems have achieved higher efficiency due to the synergistic effects, thus one of the challenges has been distinguishing the active sites in multi-component catalysts. In this study, we report the photocatalysts of In/In2O3@C with plume-blossom-like junction structure obtained by one-step roasting of MIL-68-In. The "branch" is carbon for supporting and protecting the structure, and the "blossom" is In/In2O3 for the activation and reduction of N2, which form an efficient photocatalyst for nitrogen fixation reaction with the performance of 51.83 µmol h-1 g-1. Experimental studies and DFT calculations revealed the active site of the catalyst for nitrogen fixation reaction is the In3+ around the oxygen vacancy in In2O3. More importantly, the elemental In forms the Schottky barrier with In2O3 in the catalyst, which can generate a built-in electric field to form charge transfer channels during the photocatalytic activity, not only broadens the light absorption range of the material, but also exhibits excellent metal conductivity.


Subject(s)
Prunus domestica , Catalytic Domain , Nitrogen Fixation , Carbon , Oxygen
5.
Nanoscale ; 15(8): 4014-4021, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36727644

ABSTRACT

Defect engineering is one of the effective strategies to regulate and control catalyst properties. Constructing appropriate catalytically active centers effectively tunes the electronic and surface properties of the catalyst to achieve further enrichment of photogenerated electrons, enhances the electronic feedback of the catalytically active center to the anti-bonding orbitals of the nitrogen molecule, and enhances N2 adsorption while weakening the NN bond. In this study, titanium vacancy (VTi)-rich undoped anatase p-TiO2 was successfully synthesized to investigate the effect of its metal vacancies on photocatalytic nitrogen reduction reaction (NRR) performance. The cation vacancies of VTi-rich p-TiO2 lead to local charge defects that enhance carrier separation and transport while trapping electrons to activate N2, allowing effective reduction of the excited electrons to NH3. This work provides a viable strategy for driving the efficiency of photocatalytic nitrogen fixation processes by altering the structural properties of semiconductors through cationic vacancies, offering new opportunities and challenges for the design and preparation of titanium dioxide-based materials.

6.
J Colloid Interface Sci ; 621: 406-415, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35472667

ABSTRACT

The incorporation of polyoxometalates (POMs) in metal-organic frameworks (MOFs) with host-guest structure have proven to be effective strategy to rational design of heterogeneous catalysis. In this study, the Keggin-type POM@MIL-101(Cr) composite catalysts (PMo12, PW12 and SiW12) are synthesized for nitrogen fixation reaction without sacrificial agents at room temperature in the first time. The SiW12 molecules are encapsulated in smaller cavities of MIL-101(Cr) by solvothermal method and in larger cavities by impregnation method, respectively. Solvothermal synthesized catalyst has a performance of 75.56 µmol·h-1·g-1cat and TOF value of 1.95 h-1, which are about 10 and 88 times than that of Na4SiW12O40. The excellent performance is ascribed to the synergistic effect of SiW12 and MIL-101(Cr). The MIL-101(Cr) adsorbs a large amount of N2 and generates sufficiently photogenerated electrons under sunlight irradiation, and electrons quickly transfer to the SiW12 through hydrogen bonds. Moreover, the agglomeration effect of the homogeneous catalyst SiW12 is weakened due to encapsulation with more exposed active sites. This work provides a feasible route to design and synthesize nanocomposite materials with exceptional performance for photocatalytic nitrogen fixation.

7.
J Colloid Interface Sci ; 606(Pt 1): 645-653, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34411832

ABSTRACT

Li0.45V2O5·0.89H2O (LVO) was successfully synthesized by wet-mixing of LiOH·H2O and V2O5, with subsequent hydrothermal method for the first time. The hydrated lithium ions as the intercalated guest species were inserted into the V2O5 interlayer. The as-obtained LVO with a stable lamellar structure, enlarged interlayer space, weak interlayer repulsive force and low molecular weight, which shows a specific capacitance of 403 mAh g-1 at 0.1 A g-1, excellent rate capability and longlifespan with capacity retention of 86% over 1000 cycles at 10 A g-1. Furthermore, the LVO-based AZIBs possess a synergistic insertion mechanism of Zn2+ and H+, that is the reason for its superior performance. This work provides an efficient design strategy for synthesizing advanced cathode materials for the high-performance Zn2+ energy storage system.

8.
Nanoscale ; 13(16): 7801-7809, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33876150

ABSTRACT

The vacancies of semiconductors have proven to be effective active sites for photocatalytic nitrogen fixation, but what about the role of defects in MOF materials? Herein, we report the first UiO-66 with photo-excited cluster defects and linker defects for photocatalytic nitrogen fixation. It was determined through the post-synthetic ligand exchange (PSE) process that the linker defects, rather than cluster defects, can greatly improve the performance, which is due to linker defects forming unsaturated metal nodes such as the vacancy in a semiconductor. Specifically, for photo-activated UiO-66, the NH4+ production rate was 196 and 68 µmol g-1 h-1 in air atmosphere under ultraviolet-visible (UV-Vis) and visible light, respectively. This report provides a new effective strategy to design efficient nitrogen fixation photocatalysts.

9.
Dalton Trans ; 49(44): 15739-15749, 2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33146181

ABSTRACT

The novel multidentate chelating ligands N'-(2-pyridylmethylidene)-2-(2-pyridylmethylideneamino)benzohydrazide (Hpphz) and N'-(2-salicylmethylidene)-2-(2-salicylmethylideneamino)benzohydrazide (H3sshz), which incorporate both amine and acylhydrazine Schiff base groups, were synthesized and investigated in DyIII coordination chemistry. The reactions of Hpphz and Dy(OAc)3·4H2O have yielded two {Dy2} featuring double OAc- bridges: [Dy2(H2aphz)2(OAc)4(ROH)2] [R = Me (1) and Et (2)], where the Hpphz ligands were in situ hydrolyzed into 2-amino-(2-pyridylmethylideneamino)benzohydrazide ions (H2aphz-). Besides, the reaction between H3sshz and Dy(NO)3·6H2O afforded a [Dy6(sshz)4(µ3-OH)4(µ4-O)(MeOH)4]2·17.5MeOH·2H2O cluster (3). This cluster contained two discrete {Dy6} cores, each of which consisted of a pair of {Dy3} triangular units. All the complexes displayed a single relaxation process of single-molecule magnet (SMM) behaviors under a zero dc field. Both 1 and 2 showed field-induced dual magnetic-relaxation behaviors. However, their diluted samples (1@Y and 2@Y) only showed one-step relaxation behaviors whether under a zero or applied dc field, indicating that the dual magnetic-relaxation behaviors of 1 and 2 were absent after the dilution. Combined with ab initio calculations, it could be infered that the dual magnetic-relaxation behaviors of 1 and 2 might be ascribled to the joint contributions of the single ion anisotropy and magnetic interactions. Examples of this type are rather rare in previous studies. Ab initio calculations also suggested that the discrepancy between the relaxation processes of 1 and 2 may be caused by the small difference between their magnetic interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...