Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 190: 114638, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945627

ABSTRACT

Tea trichomes were regarded as an essential evaluation index for reflecting tea flavor quality in terms of aroma and influence on infusion color. This study reveals the impact of golden oxidized trichomes on the color, volatile and non-volatile metabolites of black teas through comparative metabolomics combined quantitative analysis on hongbiluo (trichomes-deficiency black teas), hongjinluo (trichomes-rich black teas), and trichomes (from hongjinluo). Forty-six volatile components were detected using headspace solid-phase microextraction gas chromatography-mass spectrometry, while the results suggested that the contribution of trichomes to black teas is limited. A total of 60 marker non-volatile compounds were identified, including catechins, catechin oxidation products, flavonoid glycosides, organic acids, hydrolysable tannins and amino acids. Notably, p-coumaroyl-kaempferol glucosides, and catechin dimers demonstrated high levels in independent trichomes and showed a positive correlation with the brightness and yellow hue of black tea infusions, specifically kaempferol 3-O-di-(p-coumaroyl)-hexoside. Furthermore, results from fractional extraction analysis of separated trichomes provided that N-ethyl-2-pyrrolidinone-substituted epicatechin gallates, acylated kaempferol glycosides, and chromogenic catechins dimers, such as theaflavins, were primary color contributors in oxidized trichomes. Especially, we found that epicatechin gallate (ECG) and its derivates, 3'-O-methyl-ECG and N-ethyl-2-pyrrolidinone-substituted ECG, highly accumulated in trichomes, which may be associated with the varieties of hongbiluo and hongjinluo black teas. Eventually, addition tests were applied to verify the color contribution of trichome mixtures. Our findings employed comprehensive information revealing that golden oxidized trichomes contributed significantly to the brightness and yellow hue of black tea infusion, but their contribution to the aroma and metabolic profile is limited. These findings may contribute to the effective modulation of the infusion color during black tea production by regulating the proportion of tea trichomes or screening trichomes-rich or deficiency varieties.


Subject(s)
Camellia sinensis , Color , Gas Chromatography-Mass Spectrometry , Metabolomics , Oxidation-Reduction , Tea , Trichomes , Volatile Organic Compounds , Metabolomics/methods , Tea/chemistry , Camellia sinensis/chemistry , Volatile Organic Compounds/analysis , Trichomes/chemistry , Trichomes/metabolism , Catechin/analysis , Catechin/analogs & derivatives , Catechin/metabolism , Solid Phase Microextraction , Plant Leaves/chemistry , Metabolome , Flavonoids/analysis
2.
Food Chem ; 446: 138827, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38402772

ABSTRACT

As the final processing step, drying temperature between 90 and 140 â„ƒ is usually applied to terminate enzymatic activities and improve sensory characteristics of black tea. Liquid chromatography tandem mass spectrometry (LC-MS) based non-targeted and targeted metabolomics analyses combined in vitro biological assays were adopted to investigate the chemical and biological variations after drying. Fifty-nine differentially expressed metabolites including several hydroxycinnamic acid derivatives and pyroglutamic acid-glucose Amadori rearrangement products (ARPs) were identified, the latter of which was correspondingly accumulated with increasing temperature. The levels of theaflavins (TFs), thearubigins (TRs), monosaccharides and free amino acids gradually decreased with increasing temperature. Furthermore, the bioassays of black tea showed that drying under 110 â„ƒ provided the highest antioxidant capacities, but the inhibitory effects on α-glucosidase and α-amylase were decreasing along with increasing drying temperature. These results are valuable for optimizing drying process to obtain superior sensory properties and preserve bioactivities of black tea.


Subject(s)
Camellia sinensis , Tea , Tea/chemistry , Polyphenols/analysis , Temperature , Camellia sinensis/chemistry , Chromatography, Liquid , Antioxidants/analysis
3.
Food Chem X ; 21: 101190, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38357378

ABSTRACT

The present study comprehensively used integrated multi-spectral omics combined with sensory evaluation analysis to investigate the quality of three types of Yunnan Congou black teas from different tree ages (decades, DB; hundreds, HB; a thousand years, TB). TB infusion presented the highest scores of sweetness and umami, higher brightness, and yellow hue. Eighty-four marker metabolites were identified, including Amadori rearrangement products, catechin oxidation products, flavonoid glycosides, and organic acids, which are simultaneously related to tea infusions' color and taste. Moreover, the content of some characteristic flavonoid glycosides and organic acids was determined. Our finding implied trans-4-O-p-coumaroylquinic acid and quercetin 3-O-rutinoside contributed to bitterness and astringency, while dehydro theanine-glucose Amadori product and xylopyranosyl-glucopyranose resulted in umami and sweetness. These results provided quantitative and qualitative information for deciphering differences among black teas with different tea plant ages, conducing to the further utilization of ancient tea plants in Southwest China.

SELECTION OF CITATIONS
SEARCH DETAIL
...