Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomark Res ; 12(1): 48, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730450

ABSTRACT

BACKGROUND: Tumors exhibit metabolic heterogeneity, influencing cancer progression. However, understanding metabolic diversity in retinoblastoma (RB), the primary intraocular malignancy in children, remains limited. METHODS: The metabolic landscape of RB was constructed based on single-cell transcriptomic sequencing from 11 RB and 5 retina samples. Various analyses were conducted, including assessing overall metabolic activity, metabolic heterogeneity, and the correlation between hypoxia and metabolic pathways. Additionally, the expression pattern of the monocarboxylate transporter (MCT) family in different cell clusters was examined. Validation assays of MCT1 expression and function in RB cell lines were performed. The therapeutic potential of targeting MCT1 was evaluated using an orthotopic xenograft model. A cohort of 47 RB patients was analyzed to evaluate the relationship between MCT1 expression and tumor invasion. RESULTS: Distinct metabolic patterns in RB cells, notably increased glycolysis, were identified. This metabolic heterogeneity correlated closely with hypoxia. MCT1 emerged as the primary monocarboxylate transporter in RB cells. Disrupting MCT1 altered cell viability and energy metabolism. In vivo studies using the MCT1 inhibitor AZD3965 effectively suppressed RB tumor growth. Additionally, a correlation between MCT1 expression and optic nerve invasion in RB samples suggested prognostic implications. CONCLUSIONS: This study enhances our understanding of RB metabolic characteristics at the single-cell level, highlighting the significance of MCT1 in RB pathogenesis. Targeting MCT1 holds promise as a therapeutic strategy for combating RB, with potential prognostic implications.

2.
Invest Ophthalmol Vis Sci ; 65(1): 31, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38231525

ABSTRACT

Purpose: To explore the expression patterns and clinical significance of minichromosome maintenance (MCM) complex members in retinoblastoma (RB). Methods: Single-cell RNA sequencing datasets from five normal retina, six intraocular, and five extraocular RB samples were integrated to characterize the expression patterns of MCM complex members at the single-cell level. Western blot and quantitative PCR were used to detect the expression of MCM complex members in RB cell lines. Immunohistochemistry was conducted to validate the expression of MCM complex members in RB patient samples and a RB mouse model. Results: The expression of MCM2-7 is increased in RB tissue, with MCM2/3/7 showing particularly higher levels in extraocular RB. MCM3/7 are abundantly detected in cell types associated with oncogenesis. Both mRNA and protein levels of MCM3/4/6/7 are increased in RB cell lines. Immunohistochemistry further confirmed the elevated expression of MCM3 in extraocular RB, with MCM6 being the most abundantly expressed MCM in RB. Conclusions: The distinct MCM expression patterns across various RB cell types suggest diverse functional roles, offering valuable insights for targeted therapeutic strategies. The upregulation of MCM3, MCM4, MCM6, and MCM7 in RB, with a specific emphasis on MCM6 as a notable marker, highlights their potential significance.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Animals , Mice , Humans , Clinical Relevance , Retinoblastoma/genetics , Cell Nucleus , Blotting, Western , Retinal Neoplasms/genetics
3.
Commun Biol ; 7(1): 11, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172218

ABSTRACT

Retinoblastoma (RB) is the most prevalent ocular tumor of childhood, and its extraocular invasion significantly increases the risk of metastasis. Nevertheless, a single-cell characterization of RB local extension has been lacking. Here, we perform single-cell RNA sequencing on four RB samples (two from intraocular and two from extraocular RB patients), and integrate public datasets of five normal retina samples, four intraocular samples, and three extraocular RB samples to characterize RB local extension at the single-cell level. A total of 128,454 qualified cells are obtained in nine major cell types. Copy number variation inference reveals chromosome 6p amplification in cells derived from extraocular RB samples. In cellular heterogeneity analysis, we identified 10, 8, and 7 cell subpopulations in cone precursor like cells, retinoma like cells, and MKI67+ photoreceptorness decreased (MKI67+ PhrD) cells, respectively. A high expression level of SOX4 was detected in cells from extraocular samples, especially in MKI67+ PhrD cells, which was verified in additional clinical RB samples. These results suggest that SOX4 might drive RB local extension. Our study presents a single-cell transcriptomic landscape of intraocular and extraocular RB samples, improving our understanding of RB local extension at the single-cell resolution and providing potential therapeutic targets for RB patients.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/metabolism , DNA Copy Number Variations , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Gene Expression Profiling , SOXC Transcription Factors/genetics
4.
Graefes Arch Clin Exp Ophthalmol ; 262(1): 281-293, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37530848

ABSTRACT

PURPOSE: To evaluate and compare the changes in orbital soft tissue volume and visual function after endoscopic transnasal medial orbital decompression in patients with active and inactive dysthyroid optic neuropathy (DON). METHODS: This prospective, cohort study recruited 112 patients (112 eyes) with DON who were divided into an active and inactive DON group (56 eyes each) by clinical activity scores. All patients underwent endoscopic transnasal medial orbital decompression. The pre- and post-operative orbital soft tissue volumes were measured with high-resolution computed tomography (CT) using Mimics software. Visual function, including best-corrected visual acuity (BCVA), visual field (VF), and visual evoked potential (VEP), was recorded before and after surgery. RESULTS: Preoperatively, compared with the inactive DON group, the active DON group had greater extraocular muscle volume (EMV) and EMV/orbital volume (OV) ratio, but worse BCVA, VF, and exophthalmos. Postoperatively, although the EMV slightly increased, with the enlarged medial rectus muscle contributing dramatically, the EMV/OV ratio decreased in patients with DON. Besides, visual function including BCVA, VF, VEP and exophthalmos was also improved in both groups after surgery. There were no significant differences in postoperative OV; EMV; EMV/OV ratio; and the BCVA, VF, and VEP parameters between both groups (all P > 0.05). CONCLUSION: Patients with DON who did not respond well to steroids, regardless of disease activity, may benefit from orbital decompression via the decrease in the proportion of EMV in OV, especially patients with active DON, who showed more improved visual function than patients with inactive DON.


Subject(s)
Exophthalmos , Graves Ophthalmopathy , Optic Nerve Diseases , Humans , Graves Ophthalmopathy/complications , Graves Ophthalmopathy/diagnosis , Graves Ophthalmopathy/surgery , Cohort Studies , Prospective Studies , Evoked Potentials, Visual , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/etiology , Optic Nerve Diseases/surgery , Exophthalmos/surgery , Decompression, Surgical/methods , Retrospective Studies , Orbit/diagnostic imaging , Orbit/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...