Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Fluids Barriers CNS ; 20(1): 64, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620930

ABSTRACT

BACKGROUND: The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. METHODS: A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. RESULTS: The most effective histidine mutant, M1R56H, P96H, Y102H-neurotensin, caused > 8 °C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1R56H, P96H, Y102H-13A7-13A7 in capillary depleted brain lysates peaked at 1 h and were 60% retained at 8 h. A control construct with no brain targets was only 15% retained at 8 h. Addition of the albumin-binding Nb80 nanobody to make M1R56H, P96H, Y102H-13A7-13A7-Nb80 extended blood half-life from 21 min to 2.6 h. At 30-60 min, biotinylated M1R56H, P96H, Y102H-13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 h it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1R56H, P96H, Y102H-13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. CONCLUSION: The pH-sensitive mouse transferrin receptor binding nanobody M1R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.


Subject(s)
Blood-Brain Barrier , Hypothermia , Animals , Mice , Histidine , Neurotensin , Transcytosis , Hydrogen-Ion Concentration
2.
bioRxiv ; 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37333358

ABSTRACT

Background: The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. Methods: A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1 R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. Results: The most effective histidine mutant, M1 R56H, P96H, Y102H -neurotensin, caused >8°C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1 56,96,102His -13A7-13A7 in capillary depleted brain lysates peaked at 1 hour and were 60% retained at 8 hours. A control construct with no brain targets was only 15% retained at 8 hours. Addition of the albumin-binding Nb80 nanobody to make M1 R56H, P96H, Y102H -13A7-13A7-Nb80 extended blood half-life from 21 minutes to 2.6 hours. At 30-60 minutes, biotinylated M1 R56H, P96H, Y102H -13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 hours it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1 R56H, P96H, Y102H -13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. Conclusion: The pH-sensitive mouse transferrin receptor binding nanobody M1 R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.

3.
PLoS One ; 17(10): e0276107, 2022.
Article in English | MEDLINE | ID: mdl-36256604

ABSTRACT

The blood-brain barrier (BBB) presents a major obstacle in developing specific diagnostic imaging agents for many neurological disorders. In this study we aimed to generate single domain anti-mouse transferrin receptor antibodies (anti-mTfR VHHs) to mediate BBB transcytosis as components of novel MRI molecular contrast imaging agents. Anti-mTfR VHHs were produced by immunizing a llama with mTfR, generation of a VHH phage display library, immunopanning, and in vitro characterization of candidates. Site directed mutagenesis was used to generate additional variants. VHH fusions with neurotensin (NT) allowed rapid, hypothermia-based screening for VHH-mediated BBB transcytosis in wild-type mice. One anti-mTfR VHH variant was fused with an anti-amyloid-beta (Aß) VHH dimer and labeled with fluorescent dye for direct assessment of in vivo target engagement in a mouse model of AD-related Aß plaque pathology. An anti-mTfR VHH called M1 and variants had binding affinities to mTfR of <1nM to 1.52nM. The affinity of the VHH binding to mTfR correlated with the efficiency of the VHH-NT induced hypothermia effects after intravenous injection of 600 nmol/kg body weight, ranging from undetectable for nonbinding mutants to -6°C for the best mutants. The anti-mTfR VHH variant M1P96H with the strongest hypothermia effect was fused to the anti-Aß VHH dimer and labeled with Alexa647; the dye-labeled VHH fusion construct still bound both mTfR and Aß plaques at concentrations as low as 0.22 nM. However, after intravenous injection at 600 nmol/kg body weight into APP/PS1 transgenic mice, there was no detectible labeling of plaques above control levels. Thus, NT-induced hypothermia did not correlate with direct target engagement in cortex, likely because the concentration required for NT-induced hypothermia was lower than the concentration required to produce in situ labeling. These findings reveal an important dissociation between NT-induced hypothermia, presumably mediated by hypothalamus, and direct engagement with Aß-plaques in cortex. Additional methods to assess anti-mTfR VHH BBB transcytosis will need to be developed for anti-mTfR VHH screening and the development of novel MRI molecular contrast agents.


Subject(s)
Alzheimer Disease , Camelids, New World , Hypothermia , Animals , Mice , Blood-Brain Barrier/metabolism , Neurotensin/metabolism , Alzheimer Disease/metabolism , Contrast Media/metabolism , Hypothermia/metabolism , Fluorescent Dyes/metabolism , Brain/metabolism , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Mice, Transgenic , Disease Models, Animal , Transcytosis , Body Weight
4.
Int J Mol Sci ; 22(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34445399

ABSTRACT

Iron oxide nanoparticles and single domain antibodies from camelids (VHHs) have been increasingly recognized for their potential uses for medical diagnosis and treatment. However, there have been relatively few detailed characterizations of their pharmacokinetics (PK). The aim of this study was to develop imaging methods and pharmacokinetic models to aid the future development of a novel family of brain MRI molecular contrast agents. An efficient near-infrared (NIR) imaging method was established to monitor VHH and VHH conjugated nanoparticle kinetics in mice using a hybrid approach: kinetics in blood were assessed by direct sampling, and kinetics in kidney, liver, and brain were assessed by serial in vivo NIR imaging. These studies were performed under "basal" circumstances in which the VHH constructs and VHH-conjugated nanoparticles do not substantially interact with targets nor cross the blood brain barrier. Using this approach, we constructed a five-compartment PK model that fits the data well for single VHHs, engineered VHH trimers, and iron oxide nanoparticles conjugated to VHH trimers. The establishment of the feasibility of these methods lays a foundation for future PK studies of candidate brain MRI molecular contrast agents.


Subject(s)
Camelids, New World/immunology , Kidney/chemistry , Liver/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Single-Domain Antibodies/administration & dosage , Administration, Intravenous , Animals , Brain Chemistry , Female , Fluorometry , Humans , Mice , Models, Theoretical , Particle Size , Single-Domain Antibodies/blood , Single-Domain Antibodies/chemistry
5.
Sci Rep ; 11(1): 106, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420210

ABSTRACT

Magnetic resonance imaging (MRI) is a widely used non-invasive methodology for both preclinical and clinical studies. However, MRI lacks molecular specificity. Molecular contrast agents for MRI would be highly beneficial for detecting specific pathological lesions and quantitatively evaluating therapeutic efficacy in vivo. In this study, an optimized Magnetization Prepared-RApid Gradient Echo (MP-RAGE) with 2 inversion times called MP2RAGE combined with advanced image co-registration is presented as an effective non-invasive methodology to quantitatively detect T1 MR contrast agents. The optimized MP2RAGE produced high quality in vivo mouse brain T1 (or R1 = 1/T1) map with high spatial resolution, 160 × 160 × 160 µm3 voxel at 9.4 T. Test-retest signal to noise was > 20 for most voxels. Extremely small iron oxide nanoparticles (ESIONPs) having 3 nm core size and 11 nm hydrodynamic radius after polyethylene glycol (PEG) coating were intracranially injected into mouse brain and detected as a proof-of-concept. Two independent MP2RAGE MR scans were performed pre- and post-injection of ESIONPs followed by advanced image co-registration. The comparison of two T1 (or R1) maps after image co-registration provided precise and quantitative assessment of the effects of the injected ESIONPs at each voxel. The proposed MR protocol has potential for future use in the detection of T1 molecular contrast agents.


Subject(s)
Brain/diagnostic imaging , Contrast Media/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Resonance Imaging/methods , Animals , Female , Magnetic Resonance Imaging/instrumentation , Mice , Mice, Inbred C57BL , Sensitivity and Specificity
6.
Acta Neuropathol ; 136(6): 955-972, 2018 12.
Article in English | MEDLINE | ID: mdl-30194648

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repeated head traumas. Using immunohistochemistry for glial fibrillary acidic protein as a marker, plus automated quantitative analysis, we examined the characteristics and extent of astrogliosis present in stage III and IV CTE, along with Alzheimer's disease (AD), and frontotemporal dementia (FTD) cases. Astrogliosis in CTE patients was more diffuse compared to that of AD and FTD patients, which was concentrated in the sulcal depths. Of 14 patients with CTE, 10 exhibited signs of a degenerating astrocyte pathology, characterized by beaded, broken astrocytic processes. This astrocytic degeneration was typically found to be diffuse throughout the white matter, although two cases demonstrated astrocytic degeneration in the gray matter. The degeneration was also observed in 2 of 3 AD and 2 of 3 FTD brains, with overall similar characteristics across diseases. There was minimal to no astrocytic degeneration in six age-matched controls with no neurodegenerative disease. We found that the extent of the white matter astrocytic degeneration was strongly correlated with the level of overall astrogliosis in both the white and gray matter. However, astrocytic degeneration was not correlated with the overall extent of tau pathology. Specifically, there was no correlation between levels of p-tau in the sulcal depths and astrocytic degeneration in the white matter adjacent to the sulcal depths. Thus, astrocytic degeneration and overall astrogliosis appear to represent distinct pathological features of CTE. Further investigation into these astroglial pathologies could provide new insights into underlying disease mechanisms and represent a potential target for in vivo assessment of CTE as well as other neurodegenerative disorders.


Subject(s)
Astrocytes/pathology , Brain/pathology , Chronic Traumatic Encephalopathy/complications , Chronic Traumatic Encephalopathy/pathology , Gliosis/etiology , Adult , Age Factors , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Astrocytes/metabolism , Chronic Traumatic Encephalopathy/diagnostic imaging , Female , Frontotemporal Dementia/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...