Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 355, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822832

ABSTRACT

Getah virus (GETV) is a re-emerging mosquito-borne alphavirus that is highly pathogenic, mainly to pigs and horses. There are no vaccines or treatments available for GETV in swine in China. Therefore, the development of a simple, rapid, specific, and sensitive serological assay for GETV antibodies is essential for the prevention and control of GETV. Current antibody monitoring methods are time-consuming, expensive, and dependent on specialized instrumentation, and these features are not conducive to rapid detection in clinical samples. To address these problem, we developed immunochromatographic test strips (ICTS) using eukaryotically expressed soluble recombinant p62-E1 protein of GETV as a labelled antigen, which has good detection sensitivity and no cross-reactivity with other common porcine virus-positive sera. The ICTS is highly compatible with IFA and ELISA and can be stored for 1 month at 37 °C and for at least 3 months at room temperature. Hence, p62-E1-based ICTS is a rapid, accurate, and convenient method for rapid on-site detection of GETV antibodies. KEY POINTS: • We established a rapid antibody detection method that can monitor GETV infection • We developed colloidal gold test strips with high sensitivity and specificity • The development of colloidal gold test strips will aid in the field serologic detection of GETV.


Subject(s)
Alphavirus , Antibodies, Viral , Gold Colloid , Sensitivity and Specificity , Animals , Gold Colloid/chemistry , Antibodies, Viral/blood , Antibodies, Viral/immunology , Alphavirus/immunology , Swine , Chromatography, Affinity/methods , Alphavirus Infections/diagnosis , Alphavirus Infections/immunology , Swine Diseases/diagnosis , Swine Diseases/virology , Reagent Strips , China , Enzyme-Linked Immunosorbent Assay/methods
3.
Virology ; 595: 110083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696887

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Subject(s)
Down-Regulation , Histocompatibility Antigens Class I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , beta 2-Microglobulin , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Cell Line , CD8-Positive T-Lymphocytes/immunology , Mutation
4.
Regen Ther ; 25: 377-386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38414558

ABSTRACT

Cerebral small vessel disease (CSVD), as the most common, chronic and progressive vascular disease on the brain, is a serious neurological disease, whose pathogenesis remains unclear. The disease is a leading cause of stroke and vascular cognitive impairment and dementia, and contributes to about 20% of strokes, including 25% of ischemic strokes and 45% of dementias. Undoubtedly, the high incidence and poor prognosis of CSVD have brought a heavy economic and medical burden to society. The present treatment of CSVD focuses on the management of vascular risk factors. Although vascular risk factors may be important causes or accelerators of CSVD and should always be treated in accordance with best clinical practice, controlling risk factors alone could not curb the progression of CSVD brain injury. Therefore, developing safer and more effective treatment strategies for CSVD is urgently needed. Recently, mesenchymal stem cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of central nervous system disease, given their paracrine properties and immunoregulatory. Herein, we discussed the therapeutic potential of MSCs for CSVD, aiming to enable clinicians and researchers to understand of recent progress and future directions in the field.

5.
Nat Commun ; 15(1): 622, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245515

ABSTRACT

Alphaviruses are arboviruses transmitted by mosquitoes and are pathogenic to humans and livestock, causing a substantial public health burden. So far, several receptors have been identified for alphavirus entry; however, they cannot explain the broad host range and tissue tropism of certain alphaviruses, such as Getah virus (GETV), indicating the existence of additional receptors. Here we identify the evolutionarily conserved low-density lipoprotein receptor (LDLR) as a new cell entry factor for GETV, Semliki Forest virus (SFV), Ross River virus (RRV) and Bebaru virus (BEBV). Ectopic expression of LDLR facilitates cellular binding and internalization of GETV, which is mediated by the interaction between the E2-E1 spike of GETV and the ligand-binding domain (LBD) of LDLR. Antibodies against LBD block GETV infection in cultured cells. In addition, the GST-LBD fusion protein inhibits GETV infection both in vitro and in vivo. Notably, we identify the key amino acids in LDLR-LBD that played a crucial role in viral entry; specific mutations in the CR4 and CR5 domain of LDLR-LBD reduce viral entry to cells by more than 20-fold. These findings suggest that targeting the LDLR-LBD could be a potential strategy for the development of antivirals against multiple alphaviruses.


Subject(s)
Alphavirus Infections , Alphavirus , Culicidae , Animals , Humans , Alphavirus/genetics , Virus Internalization , Semliki forest virus/genetics , Semliki forest virus/metabolism , Alphavirus Infections/genetics
6.
Trends Microbiol ; 32(1): 79-92, 2024 01.
Article in English | MEDLINE | ID: mdl-37541811

ABSTRACT

The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.


Subject(s)
COVID-19 , Cat Diseases , Deer , Dog Diseases , Animals , Dogs , Cats , Humans , SARS-CoV-2/genetics , Deer/metabolism , Mink/metabolism , Risk Assessment , Spike Glycoprotein, Coronavirus/genetics , Mutation , Protein Binding
7.
Int J Biol Macromol ; 253(Pt 6): 127319, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37820917

ABSTRACT

Human coronavirus 229E (HCoV-229E) represents one of the known coronaviruses capable of infecting humans and causes mild respiratory symptoms. It is also considered to have a zoonotic source, originating from animals and being transmitted the humans. In this study, a comprehensive phylogenetic and codon usage analysis of the spike (S) gene of HCoV-229E was conducted. Utilizing phylogenetic analysis and principal component analysis, HCoV-229E was categorized into four distinct clusters, each demonstrating unique host affiliations. Furthermore, it was observed that the codon usage bias within the S gene of HCoV-229E is relatively low, primarily influenced by natural selection patterns, with contributions from mutation pressure and dinucleotide abundance. Comparative analysis involving Codon Adaptation Index (CAI) and Relative Codon Deoptimization Index (RCDI) revealed that the codon usage pattern of HCoV-229E mirrors more closely that of camels, as opposed to alpacas and humans. The elucidation of the codon usage pattern within HCoV-229E, which we have meticulously examined, offers valuable insights for a more comprehensive comprehension of viral features, history, and evolutionary trajectory.


Subject(s)
Coronavirus 229E, Human , Coronavirus , Animals , Humans , Coronavirus 229E, Human/genetics , Phylogeny , Codon Usage , Spike Glycoprotein, Coronavirus/genetics , Coronavirus/genetics
8.
Virus Evol ; 9(2): vead051, 2023.
Article in English | MEDLINE | ID: mdl-37711483

ABSTRACT

Swine pathogens have a long history of zoonotic transmission to humans, occasionally leading to sustained outbreaks or pandemics. Through a retrospective epidemiological study of swine populations in China, we describe novel lineages of porcine hemagglutinating encephalomyelitis virus (PHEV) complex coronaviruses (CoVs) that cause exclusively respiratory symptoms with no signs of the neurological symptoms typically associated with classical PHEV infection. Through large-scale epidemiological surveillance, we show that these novel lineages have circulated in at least eight provinces in southeastern China. Phylogenetic and recombination analyses of twenty-four genomes identified two major viral lineages causing respiratory symptoms with extensive recombination within them, between them, and between classical PHEV and the novel respiratory variant PHEV (rvPHEV) lineages. Divergence times among the sampled lineages in the PHEV virus complex date back to 1886-1958 (mean estimate 1928), with the two major rvPHEV lineages separating approximately 20 years later. Many rvPHEV viruses show amino acid substitutions at the carbohydrate-binding site of hemagglutinin esterase (HE) and/or have lost the cysteine required for HE dimerization. This resembles the early adaptation of human CoVs, where HE lost its hemagglutination ability to adapt to growth in the human respiratory tract. Our study represents the first report of the evolutionary history of rvPHEV circulating in swine and highlights the importance of characterizing CoV diversity and recombination in swine to identify pathogens with outbreak potential that could threaten swine farming.

9.
J Virol ; 97(10): e0059123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37768084

ABSTRACT

IMPORTANCE: Alphaviruses threaten public health continuously, and Getah virus (GETV) is a re-emerging alphavirus that can potentially infect humans. Approved antiviral drugs and vaccines against alphaviruses are few available, but several host antiviral factors have been reported. Here, we used GETV as a model of alphaviruses to screen for additional host factors. Tetrachlorodibenzo-p-dioxin-inducible poly(ADP ribose) polymerase was identified to inhibit GETV replication by inducing ubiquitination of the glycoprotein E2, causing its degradation by recruiting the E3 ubiquitin ligase membrane-associated RING-CH8 (MARCH8). Using GETV as a model virus, focusing on the relationship between viral structural proteins and host factors to screen antiviral host factors provides new insights for antiviral studies on alphaviruses.


Subject(s)
Alphavirus , Host Microbial Interactions , Nucleoside Transport Proteins , Poly(ADP-ribose) Polymerases , Transcriptome , Humans , Alphavirus/growth & development , Alphavirus/immunology , Glycoproteins/metabolism , Nucleoside Transport Proteins/genetics , Nucleoside Transport Proteins/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Ubiquitination , Viral Structural Proteins/metabolism , Virus Replication
10.
Syst Biol ; 72(5): 1136-1153, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37458991

ABSTRACT

Divergence time estimation is crucial to provide temporal signals for dating biologically important events from species divergence to viral transmissions in space and time. With the advent of high-throughput sequencing, recent Bayesian phylogenetic studies have analyzed hundreds to thousands of sequences. Such large-scale analyses challenge divergence time reconstruction by requiring inference on highly correlated internal node heights that often become computationally infeasible. To overcome this limitation, we explore a ratio transformation that maps the original $N-1$ internal node heights into a space of one height parameter and $N-2$ ratio parameters. To make the analyses scalable, we develop a collection of linear-time algorithms to compute the gradient and Jacobian-associated terms of the log-likelihood with respect to these ratios. We then apply Hamiltonian Monte Carlo sampling with the ratio transform in a Bayesian framework to learn the divergence times in 4 pathogenic viruses (West Nile virus, rabies virus, Lassa virus, and Ebola virus) and the coralline red algae. Our method both resolves a mixing issue in the West Nile virus example and improves inference efficiency by at least 5-fold for the Lassa and rabies virus examples as well as for the algae example. Our method now also makes it computationally feasible to incorporate mixed-effects molecular clock models for the Ebola virus example, confirms the findings from the original study, and reveals clearer multimodal distributions of the divergence times of some clades of interest.


Subject(s)
Algorithms , Phylogeny , Bayes Theorem , Time Factors , Monte Carlo Method
11.
Appl Microbiol Biotechnol ; 107(12): 3955-3966, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37166480

ABSTRACT

Fusion tag technology is an important tool for rapid separation, purification, and characterization of proteins. Combined with monoclonal antibodies, tag epitope systems can be rapidly adapted to many assay systems. A monoclonal antibody that reacts with the matrix protein of the rabies virus CVS-11 strain was reported. The epitope (termed M) targeted by this antibody contains only six amino acids. We examine whether this specific sequence epitope can be applied as a protein tag. We show ectopic expression of M-tagged proteins has little impact on cell viability or major signaling pathways. The M tag system can be used for western blotting, immunoprecipitation, immunofluorescence staining, and flow cytometry assays. The results indicate the specificity, sensitivity, and versatility of this novel epitope tag system are comparable to the widely used FLAG tag system, providing researchers with an additional tool for molecular analysis. KEY POINTS: • A short peptide (Pro Pro Tyr Asp Asp Asp) can be applied as a new tag. • The new epitope-tagging fusion system has no effect on the main cellular signaling pathway. • The epitope-tagging fusion system can be widely used for western blotting, immunoprecipitation, immunofluorescence, flow cytometry, etc.


Subject(s)
Rabies virus , Epitopes , Rabies virus/genetics , Peptides/metabolism , Antibodies, Monoclonal , Blotting, Western
12.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116474

ABSTRACT

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Subject(s)
Viruses , Zoonoses , Animals , Humans , Mammals , Disease Outbreaks , Risk Assessment
13.
J Mol Model ; 29(4): 101, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36928363

ABSTRACT

CONTEXT: Viscosity and viscosity index are the crucial properties of lubricant base stocks. Molecular dynamics simulation and quantum calculation were used to simulate the five isomers of C26H54 to study the intrinsic relationship between viscosity, viscosity index, and the molecular structure of isoalkanes. The results showed that the intermolecular interaction energy and the volume of rigid-like groups were the intrinsic factors that affected the viscosity and which could describe the viscosity quantitatively. The molecule conformation was studied by calculating the rotational energy barrier of the dihedral angle in the isoalkane molecule, and combined with molecular dynamics, the effect of temperature on the molecular conformation at 313 K and 373 K was further investigated. The α, ß, and γ carbon atoms adjacent to the tertiary carbon in the isoalkane molecule were difficult to rotate due to steric hindrance and could be regarded as rigid-like groups at 313 K. The tertiary carbon and the three adjacent carbon atoms formed a regular tetrahedral rigid-like group at 373 K. The changes in the intermolecular interaction energy and the volume of the rigid-like group with temperatures could better describe the viscosity index and reveal the fundamental reasons that affect the viscosity and the viscosity index. The molecular-level understanding of the relationship between the molecular structure and properties of isoalkanes provided theoretical support and scientific guidance for designing isoalkane molecules with specific properties. METHODS: Molecular dynamics simulation and quantum calculation were performed using Material Studio 8.0 software. The Amorphous Cell module was used to create an amorphous cell. The Foricite module was used for molecular dynamics simulation; the forcefield was assigned as COMPASS II. Nose-Hoover thermostat and Berendsen barostat were applied to maintain the temperature and pressure, respectively. To describe the non-bond interactions, the Ewald method was applied to calculate the van der Waals and electrostatic interactions. The Conformers module was used to study the conformation and the Dmol3 module was used to calculate the conformational energy with fine quality; the functional of GGA-PW91 and the basis set of DNP were used to calculate the energy.

14.
Appl Microbiol Biotechnol ; 107(2-3): 651-661, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36602561

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that caused diarrhea and/or vomiting in neonatal piglets worldwide. Coronaviruses nucleocapsid (N) protein is the most conserved structural protein for viral replication and possesses good antigenicity. In this study, three monoclonal antibodies (mAbs), 3B4, 4D3, and 4E3 identified as subclass IgG2aκ were prepared using the lymphocytic hybridoma technology against PDCoV N protein. Furthermore, the B-cell epitope recognized by mAb 4D3 was mapped by dozens of overlapping truncated recombinant proteins based on the western blotting. The polypeptide 28QFRGNGVPLNSAIKPVE44 (EP-4D3) in the N-terminal of PDCoV N protein was identified as the minimal linear epitope for binding mAb 4D3. And the EP-4D3 epitope's amino acid sequence homology study revealed that PDCoV strains are substantially conserved, with the exception of the Alanine43 substitution Valine43 in the China lineage, the Early China lineage, and the Thailand, Vietnam, and Laos lineage. The epitope sequences shared high similarity (94.1%) with porcine coronavirus HKU15-155 (PorCoV HKU15), Asian leopard cats coronavirus (ALCCoV), sparrow coronavirus HKU17 (SpCoV HKU17), and sparrow deltacoronavirus. In contrast, the epitope sequences shared a very low homology (11.8 to 29.4%) with other porcine CoVs (PEDV, TGEV, PRCV, SADS-CoV, PHEV). Overall, the study will enrich the biological function of PDCoV N protein and provide foundational data for further development of diagnostic applications. KEY POINTS: • Three monoclonal antibodies against PDCoV N protein were prepared. • Discovery of a novel B-cell liner epitope (28QFRGNGVPLNSAIKPVE44) of PDCoV N protein. • The epitope EP-4D3 was conserved among PDCoV strains.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Deltacoronavirus/genetics , Epitopes, B-Lymphocyte/genetics , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Coronavirus/genetics , Coronavirus Infections/veterinary , Antibodies, Monoclonal
15.
Virus Evol ; 9(1): veac125, 2023.
Article in English | MEDLINE | ID: mdl-36694817

ABSTRACT

Virus emergence may occur through interspecies transmission and recombination of viruses coinfecting a host, with potential to pair novel and adaptive gene combinations. Camels are known to harbor diverse ribonucleic acid viruses with zoonotic and epizootic potential. Among them, astroviruses are of particular interest due to their cross-species transmission potential and endemicity in diverse host species, including humans. We conducted a molecular epidemiological survey of astroviruses in dromedaries from Saudi Arabia and Bactrian camels from Inner Mongolia, China. Herein, we deployed a hybrid sequencing approach coupling deep sequencing with rapid amplification of complementary deoxyribonucleic acid ends to characterize two novel Bactrian and eight dromedary camel astroviruses, including both partial and complete genomes. Our reported sequences expand the known diversity of dromedary camel astroviruses, highlighting potential recombination events among the astroviruses of camelids and other host species. In Bactrian camels, we detected partially conserved gene regions bearing resemblance to human astrovirus types 1, 4, and 8 although we were unable to recover complete reading frames from these samples. Continued surveillance of astroviruses in camelids, particularly Bactrian species and associated livestock, is highly recommended to identify patterns of cross-species transmission and to determine any epizootic threats and zoonotic risks posed to humans. Phylogenomic approaches are needed to investigate complex patterns of recombination among the astroviruses and to infer their evolutionary history across diverse host species.

16.
J Virol ; 97(1): e0109122, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36475767

ABSTRACT

Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.


Subject(s)
Arboviruses , Genome, Viral , Phylogeny , Animals , Humans , Mice , Arboviruses/genetics , China/epidemiology , Genomics , Livestock/virology
18.
Viruses ; 14(8)2022 08 19.
Article in English | MEDLINE | ID: mdl-36016441

ABSTRACT

Porcine viral diarrhea diseases affect the swine industry, resulting in significant economic losses. Porcine epidemic diarrhea virus (PEDV) genotypes G1 and G2, and groups A and C of the porcine rotavirus, are major etiological agents of severe gastroenteritis and profuse diarrhea, particularly among piglets, with mortality rates of up to 100%. Based on the high prevalence rate and frequent co-infection of PEDV, RVA, and RVC, close monitoring is necessary to avoid greater economic losses. We have developed a multiplex TaqMan probe-based real-time PCR for the rapid simultaneous detection and differentiation of PEDV subtypes G1 and G2, RVA, and RVC. This test is highly sensitive, as the detection limits were 20 and 100 copies/µL for the G1 and G2 subtypes of PEDV, respectively, and 50 copies/µL for RVA and RVC, respectively. Eighty-eight swine clinical samples were used to evaluate this new test. The results were 100% in concordance with the standard methods. Since reassortment between porcine and human rotaviruses has been reported, this multiplex test not only provides a basis for the management of swine diarrheal viruses, but also has the potential to impact public health as well.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Rotavirus , Swine Diseases , Animals , Coronavirus Infections/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Rotavirus/genetics , Rotavirus/isolation & purification , Sensitivity and Specificity , Swine , Swine Diseases/virology
20.
Microbiol Spectr ; 10(3): e0024222, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35647875

ABSTRACT

Paramyxoviridae is a rapidly growing family of viruses, whose potential for cross-species transmission makes it difficult to predict the harm of newly emerging viruses to humans and animals. To better understand their diversity, evolutionary history, and co-evolution with their hosts, we analyzed a collection of porcine parainfluenza virus (PPIV) genomes to reconstruct the species classification basis and evolutionary history of the Respirovirus genus. We sequenced 17 complete genomes of porcine respirovirus 1 (also known as porcine parainfluenza virus 1; PPIV-1), thereby nearly tripling the number of currently available PPIV-1 genomes. We found that PPIV-1 was widely prevalent in China with two divergent lineages, PPIV-1a and PPIV-1b. We further provided evidence that a new species, porcine parainfluenza virus 2 (PPIV-2), had recently emerged in China. Our results pointed to a need for revising the current species demarcation criteria of the Respirovirus genus. In addition, we used PPIV-1 as an example to explore recombination and diversity of the Respirovirus genus. Interestingly, we only detected heterosubtypic recombination events between PPIV-1a and PPIV-1b with no intrasubtypic recombination events. The recombination hotspots highlighted a diverse geography-dependent genome structure of paramyxovirus infecting swine in China. Furthermore, we found no evidence of co-evolution between respirovirus and its host, indicating frequent cross-species transmission. In summary, our analyses showed that swine can be infected with a broad range of respiroviruses and recombination may serve as an important evolutionary mechanism for the Respirovirus genus' greater diversity in genome structure than previously anticipated. IMPORTANCE Livestock have emerged as critically underrecognized sources of paramyxovirus diversity, including pigs serving as the source of Nipah virus (NiV) and swine parainfluenza virus type 3, and goats and bovines harboring highly divergent viral lineages. Here, we identified a new species of Respirovirus genus named PPIV-2 in swine and proposed to revise the species demarcation criteria of the Respirovirus genus. We found heterosubtypic recombination events and high genetic diversity in PPIV-1. Further, we showed that genetic recombination may have occurred in the Respirovirus genus which may be associated with host range expansion. The continued expansion of Respirovirus genus diversity in livestock with relatively high human contact rates requires enhanced surveillance and ongoing evaluation of emerging cross-species transmission threats.


Subject(s)
Paramyxoviridae Infections , Swine Diseases , Animals , Cattle , Genetic Variation , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/veterinary , Phylogeny , Respirovirus , Swine , Swine Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...