Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Blood Cancer Discov ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713018

ABSTRACT

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPNs) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for triple negative myelofibrosis (MF) patients who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in triple negative MF, and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs.

2.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798623

ABSTRACT

Condensates formed by intrinsically disordered proteins mediate a myriad of cellular processes and are linked to pathological conditions including neurodegeneration. Rules of how different types of amino acids (e.g., π-π pairs) dictate the physical properties of biomolecular condensates are emerging, but our understanding of the roles of different amino acids is far from complete. Here we studied condensates formed by tetrapeptides of the form XXssXX, where X is an amino acid and ss represents a disulfide bond along the backbone. Eight peptides form four types of condensates at different concentrations and pH values: droplets (X = F, L, M, P, V, A); amorphous dense liquids (X = L, M, P, V, A); amorphous aggregates (X = W), and gels (X = I, V, A). The peptides exhibit enormous differences in phase equilibrium and material properties, including a 368-fold range in the threshold concentration for phase separation and a 3856-fold range in viscosity. All-atom molecular dynamics simulations provide physical explanations of these results. The present work also reveals widespread critical behaviors, including critical slowing down manifested by the formation of amorphous dense liquids and critical scaling obeyed by fusion speed, with broad implications for condensate function.

3.
Org Lett ; 26(7): 1299-1303, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38330294

ABSTRACT

Tandem transformations of 1,3-diynyl propiolate derivatives are described. The Alder-ene reaction generates an enyne-allene, which undergoes a formal 1,7-H shift or a Diels-Alder reaction, depending on the substituent on the alkyne. A terminal or aryl-substituted alkyne promotes a 1,7-H shift to generate a new enyne-allene, which undergoes a Myers-Saito cycloaromatization followed by a 1,5-H transfer-mediated cyclization to form highly functionalized benzo-fused 6-membered cycles. The reactivity of the preformed enyne-allene shows comparable reactivity profiles.

4.
Chemistry ; 30(6): e202303428, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38050744

ABSTRACT

We developed intramolecular carboxyamidations of alkyne-tethered O-acylhydroxamates followed by either thermally induced spontaneous or 4-(dimethylamino)pyridine-catalyzed O→O or O→N acyl group migration. Under iron-catalyzed conditions, the carboxyamidation products were generated in high yield from both Z-alkene and arene-tethered substrates. DFT calculations indicate that the iron-catalyzed carboxyamidation proceeds via a stepwise mechanism involving iron-imidyl radical cyclization followed by intramolecular acyloxy transfer from the iron center to the alkenyl radical center to furnish the cis-carboxyamidation product. Upon treatment with 4-(dimethylamino)pyridine, the Z-alkene-tethered carboxyamidation products underwent selective O→O acyl migration to generate 2-acyloxy-5-acyl pyrroles. Thermal O→N acyl migration occurs during carboxyamidation if the Z-alkene linker contains an alkyl or an aryl substituent at the ß-position of the carbonyl group. On the other hand, the arene linker-containing compounds selectively undergo O→N acyl migration to generate N-acyl-3-acylisoindolinones, and the corresponding O→O acyl migration forming isoindole derivatives was not observed.

5.
Front Immunol ; 14: 1051506, 2023.
Article in English | MEDLINE | ID: mdl-36776873

ABSTRACT

Discovered On Gastrointestinal stromal tumors protein 1 (DOG1), a major calcium-activated chloride channel, has been used as a common diagnostic marker for gastrointestinal stromal tumors. However, the therapeutic application of DOG1 was not well defined. Here, we aim to investigate its potential as a therapeutic target for an antibody-drug conjugate (ADC) in various cancers of the alimentary tract and metastasis. The DOG1 expression profile was determined among TCGA samples and tissue microarrays. High levels of DOG1 expression were ubiquitously observed in multiple cancer samples from the alimentary tract determined by TCGA samples and tissue microarrays. Circulating tumor cells isolated from metastatic colon cancer patients were also positive for DOG1 expression. The mechanisms of anti-DOG1 antibody were investigated by dual-luciferase reporter assay. The anti-DOG1 antibody could inhibit proliferation and metastasis via p53 signaling in limited cancer cell lines. The anti-DOG1 antibody was conjugated with a microtubule inhibitor DM4, to construct a new anti-DOG1-DM4-ADC to strengthen its activity. The anti-DOG1-DM4-ADC showed cytotoxicity at the nanomolar level in vitro. In the murine xenograft tumor models, treatment of anti-DOG1-DM4-ADC achieved a significant tumor growth inhibition rate. Our study indicates that anti-DOG1-DM4-ADC may be promising therapeutic molecules for DOG1-positive alimentary tract tumors and may be effective in inhibiting recurrence after curative resection of liver metastases of colorectal origin.


Subject(s)
Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Immunoconjugates , Liver Neoplasms , Humans , Mice , Animals , Gastrointestinal Stromal Tumors/pathology , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Neoplasm Proteins/metabolism , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/pathology , Liver Neoplasms/drug therapy
6.
Chemistry ; 29(19): e202203371, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36628950

ABSTRACT

The cycloisomerization of alkyne-tethered N-benzoyloxycarbamates to 2-(3H)oxazolones is described. Two catalytic systems are tailored for intramolecular 5-exo-alkyne carboxyamidation and concomitant alkene isomerization. PtCl2 /CO (5 mol%, toluene, 100 °C) promotes both carboxyamidation and alkene isomerization but has a limited substrate scope. On the other hand, FeCl3 (5 mol%, CH3 CN, 100 °C) promotes carboxyamidation effectively but a cocatalyst is required for the exocyclic alkene isomerization. Thus, a two-step one-pot protocol has been developed for a broader reaction scope, which involves FeCl3 -catalyzed carboxyamidation and base-induced alkene isomerization. Crossover experiments suggest that these reactions proceed mainly through a mechanism involving acylnitrenoid intermediates rather than carbenoid intermediates.

7.
Soft Matter ; 18(18): 3557-3564, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35452067

ABSTRACT

We experimentally investigate the Edwards volume ensemble in cyclically sheared bidisperse disks of two friction coefficients (µ ≈ 0.3 and µ → ∞) subjected to a range of shear amplitudes γm. Despite the local and global anisotropy, hysteresis, and the potential long-range correlation of the free volume, the Edwards volume ensemble surprisingly provides an excellent statistical description of disk packings in cyclically sheared systems. Our finding can be better understood from the comprehensive analysis of the geometric and statistical properties of Voronoi cells of individual particles. First, the average degrees of anisotropy of Voronoi cells are weak at both the microscopic and macroscopic scales within a range of shear amplitudes γm of up to γm = 12% regardless of the inter-particle friction coefficients µ even though the azimuthal distributions of the Voronoi cell depend on µ. Second, there is only negligible hysteresis of global compactivity and volume fluctuations. Finally, the spatial correlations of the free volume and the orientation are weakly anisotropic and short ranged for practical purposes. Both results are independent of µ. Interestingly, our free-volume statistical results are consistent with the simple physical picture that the free volume is directly proportional to the compactivity.

8.
Soft Matter ; 18(5): 983-989, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35014635

ABSTRACT

We perform a systematic experimental study to investigate the velocity fluctuations in the two-dimensional granular matter of low and high friction coefficients subjected to cyclic shear of a range of shear amplitudes, whose velocity fields are strikingly turbulent-like with vortices of different scales. The scaling behaviors of both the transverse velocity power spectra ET(k) ∝ k-αT and, more severely, the longitudinal velocity power spectra EL(k) ∝ k-αL are affected by the prominent peak centered around k ≈ 2π of the inter-particle distance due to the static structure factor of the hard-particle nature in contrast to the real turbulence. To reduce the strong peak effect to the actual values of αν (the subscript 'ν' refers to either T or L), we subsequently analyze the second-order velocity structure functions of S(2)ν(r) in real space, which show the power-law scalings of S(2)ν(r) ∝ rßν for both modes. From the values of ßν, we deduce the corresponding αν from the scaling relations of αν = ßν + 2. The deduced values of αν increase continuously with the shear amplitude γm, showing no signature of yielding transition, and are slightly larger than αν = 2.0 at the limit of γm → 0, which corresponds to the elastic limit of the system, for all γm. The inter-particle friction coefficients show no significant effect on the turbulent-like velocity fluctuations. Our findings suggest that the turbulent-like collective particle motions are governed by both the elasticity and plasticity in cyclically sheared granular materials.

9.
Sci Rep ; 11(1): 18442, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531468

ABSTRACT

The Abu Gabra and Bentiu formations are widely distributed within the interior Muglad Basin. Recently, much attention has been paid to study, evaluate and characterize the Abu Gabra Formation as a proven reservoir in Muglad Basin. However, few studies have been documented on the Bentiu Formation which is the main oil/gas reservoir within the basin. Therefore, 33 core samples of the Great Moga and Keyi oilfields (NE Muglad Basin) were selected to characterize the Bentiu Formation reservoir using sedimentological and petrophysical analyses. The aim of the study is to de-risk exploration activities and improve success rate. Compositional and textural analyses revealed two main facies groups: coarse to-medium grained sandstone (braided channel deposits) and fine grained sandstone (floodplain and crevasse splay channel deposits). The coarse to-medium grained sandstone has porosity and permeability values within the range of 19.6% to 32.0% and 1825.6 mD to 8358.0 mD respectively. On the other hand, the fine grained clay-rich facies displays poor reservoir quality as indicated by porosity and permeability ranging from 1.0 to 6.0% and 2.5 to 10.0 mD respectively. A number of varied processes were identified controlling the reservoir quality of the studies samples. Porosity and permeability were enhanced by the dissolution of feldspars and micas, while presence of detrital clays, kaolinite precipitation, iron oxides precipitation, siderite, quartz overgrowths and pyrite cement played negative role on the reservoir quality. Intensity of the observed quartz overgrowth increases with burial depth. At great depths, a variability in grain contact types are recorded suggesting conditions of moderate to-high compactions. Furthermore, scanning electron microscopy revealed presence of micropores which have the tendency of affecting the fluid flow properties in the Bentiu Formation sandstone. These evidences indicate that the Bentiu Formation petroleum reservoir quality is primarily inhibited by grain size, total clay content, compaction and cementation. Thus, special attention should be paid to these inhibiting factors to reduce risk in petroleum exploration within the area.

10.
Adv Sci (Weinh) ; 8(14): e2004846, 2021 07.
Article in English | MEDLINE | ID: mdl-34060252

ABSTRACT

Chromosomal translocation results in development of an Ewing sarcoma breakpoint region 1-Friend leukemia integration 1 (EWS-FLI1) fusion oncogene in the majority of Ewing sarcoma. The persistent dependence of the tumor for this oncoprotein points to EWS-FLI1 as an ideal drug target. Although EWS-FLI1 transcriptional targets and binding partners are evaluated, the mechanisms regulating EWS-FLI1 protein stability remain elusive. Speckle-type POZ protein (SPOP) and OTU domain-containing protein 7A (OTUD7A) are identified as the bona fide E3 ligase and deubiquitinase, respectively, that control EWS-FLI1 protein turnover in Ewing sarcoma. Casein kinase 1-mediated phosphorylation of the VTSSS degron in the FLI1 domain enhances SPOP activity to degrade EWS-FLI1. Opposing this process, OTUD7A deubiquitinates and stabilizes EWS-FLI1. Depletion of OTUD7A in Ewing sarcoma cell lines reduces EWS-FLI1 protein abundance and impedes Ewing sarcoma growth in vitro and in mice. Performing an artificial-intelligence-based virtual drug screen of a 4-million small molecule library, 7Ai is identified as a potential OTUD7A catalytic inhibitor. 7Ai reduces EWS-FLI1 protein levels and decreases Ewing sarcoma growth in vitro and in a xenograft mouse model. This study supports the therapeutic targeting of OTUD7A as a novel strategy for Ewing sarcoma bearing EWS-FLI1 and related fusions, and may also be applicable to other cancers dependent on aberrant FLI1 expression.


Subject(s)
Deubiquitinating Enzymes/genetics , Gene Expression Regulation, Neoplastic/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Repressor Proteins/genetics , Sarcoma, Ewing/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Heterografts , Humans , Mice , Mice, Nude , Protein Stability
11.
J Am Chem Soc ; 143(19): 7490-7500, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33961744

ABSTRACT

Metallaaromatics constitute a unique class of aromatic compounds where one or more transition metal elements are incorporated into the aromatic system, the parent of which is metallabenzene. One of the main concerns about metallabenzenes generally deals with the structural characterization related to their relative aromaticity compared to the carbon archetype. Transition metal-containing metallabenzenes are also implicated in certain catalytic processes such as alkyne metathesis polymerization; however, these transition metal-based metallaaromatic compounds have not been developed as a catalyst. Herein, we describe an effective strategy to generate diverse arrays of ruthenabenzenes and demonstrated them as an aromatic equivalent of the Grubbs-type ruthenium alkylidene catalysts. These ruthenabenzenes can be prepared via an enyne metathesis and metallotropic [1,3]-shift cascade process to form alkyne-chelated ruthenium alkylidene intermediates followed by spontaneous cycloaromatization. The aromatic nature of these complexes was confirmed by spectroscopic and X-ray crystallographic data, and the mechanistic pathways for the cycloaromatization process were studied by DFT calculations. These ruthenabenzenes display robust catalytic activity for metathesis and other transformations, which illustrates that metallabenzenes are not only compounds of structural and theoretical interests but also are a novel platform for new catalyst development.


Subject(s)
Alkenes/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Catalysis , Density Functional Theory , Hydrogen-Ion Concentration , Molecular Structure
13.
Sci Rep ; 11(1): 7229, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790377

ABSTRACT

This paper presents new research on a lacustrine anoxic event (LAE). These data include stable carbon isotope (δ13Corg), pyrite sulfur isotope (δ34Spy), trace element and biomarker ratios from the Hongmiaozi Basin (North China) and unravel the response of continental lakes under the influence of early Aptian extreme climate conditions. According to the stratigraphic chronology (122-118 Ma) and carbon isotope correlations, terrestrial sediment was influenced by the early Aptian Oceanic Anoxic Event (OAE1a). The results show that the Xiahuapidianzi Group experienced a significant warming process under negative excursions in carbon isotopes due to the influence of increased carbon dioxide partial pressure (pCO2). The climate varied from warm and humid to hot and arid (high Sr/Cu, low Rb/Sr, calcareous mudstone), the evaporation and salinity increased (high Sr/Ba and B/Ga), and land input sources decreased (low Zr, Ti and Th). Moreover, high total organic carbon (TOC) content was source from bacteria, algae (n-alkanes), and euxinic depositional environments (Pr/Ph, Cu/Zn and U V Mo). In the stage of continuous carbon isotopes positive excursion, organic matter accumulated rapidly. A paleolake environment model has provided a better understanding of current global climate issues under global warming caused by increased carbon dioxide concentrations.

14.
iScience ; 23(9): 101463, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32861998

ABSTRACT

cGAS/STING signaling plays an essential role in sensing cytosolic DNA. cGAS activity is regulated by posttranslational modifications and binding partners. cGAS interactome largely includes mammalian or viral proteins. Whether and how bacterial proteins bind cGAS to modulate innate immunity remain elusive. Here, we found streptavidin, a secreted bacterial protein, selectively bound cGAS to promote DNA-induced cGAS activation and interferon-ß production. Mechanistically, streptavidin enhanced DNA binding and cGAS phase separation, therefore facilitating cGAS activation. Using an HSV-1-infected mouse model, we found streptavidin nanoparticles facilitated HSV-1 clearance through improving innate immunity. Considering the clinical usage of streptavidin as an immune stimulant and drug delivery vehicle and its biotechnological usage for biotin-labeled protein purification and detection, our studies not only provide an example for a bacterial protein regulating cGAS activity but also suggest caution needs to be taken when using streptavidin in various applications given to its ability to induce innate immunity.

15.
Genes (Basel) ; 11(7)2020 07 02.
Article in English | MEDLINE | ID: mdl-32630768

ABSTRACT

The mTOR signaling controls essential biological functions including proliferation, growth, metabolism, autophagy, ageing, and others. Hyperactivation of mTOR signaling leads to a plethora of human disorders; thus, mTOR is an attractive drug target. The discovery of mTOR signaling started from isolation of rapamycin in 1975 and cloning of TOR genes in 1993. In the past 27 years, numerous research groups have contributed significantly to advancing our understanding of mTOR signaling and mTOR biology. Notably, a variety of experimental approaches have been employed in these studies to identify key mTOR pathway members that shape up the mTOR signaling we know today. Technique development drives mTOR research, while canonical biochemical and yeast genetics lay the foundation for mTOR studies. Here in this review, we summarize major experimental approaches used in the past in delineating mTOR signaling, including biochemical immunoprecipitation approaches, genetic approaches, immunofluorescence microscopic approaches, hypothesis-driven studies, protein sequence or motif search driven approaches, and bioinformatic approaches. We hope that revisiting these distinct types of experimental approaches will provide a blueprint for major techniques driving mTOR research. More importantly, we hope that thinking and reasonings behind these experimental designs will inspire future mTOR research as well as studies of other protein kinases beyond mTOR.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Genetic Techniques , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , TOR Serine-Threonine Kinases/genetics
16.
Curr Issues Mol Biol ; 35: 59-84, 2020.
Article in English | MEDLINE | ID: mdl-31422933

ABSTRACT

Ubiquitin and ubiquitin-like modifiers, such as SUMO, exert distinct physiological functions by conjugating to protein substrates. Ubiquitination or SUMOylation of protein substrates determine the fate of modified proteins, including proteasomal degradation, cellular re-localization, alternations in binding partners and serving as a protein-binding platform, in a ubiquitin or SUMO linkage-dependent manner. DNA damage occurs constantly in living organisms but is also repaired by distinct tightly controlled mechanisms including homologous recombination, non-homologous end joining, inter-strand crosslink repair, nucleotide excision repair and base excision repair. On sensing damaged DNA, a ubiquitination/SUMOylation landscape is established to recruit DNA damage repair factors. Meanwhile, misloaded and mission-completed repair factors will be turned over by ubiquitin or SUMO modifications as well. These ubiquitination and SUMOylation events are tightly controlled by both E3 ubiquitin/SUMO ligases and deubiquitinases/deSUMOylases. In this review, we will summarize identified ubiquitin and SUMO-related modifications and their function in distinct DNA damage repair pathways, and provide evidence for responsible E3 ligases, deubiquitinases, SUMOylases and deSUMOylases in these processes. Given that genome instability leads to human disorders including cancer, understanding detailed molecular mechanisms for ubiquitin and SUMO-related regulations in DNA damage response may provide novel insights into therapeutic modalities to treat human diseases associated with deregulated DNA damage response.


Subject(s)
DNA Damage , DNA Repair , Signal Transduction/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , DNA End-Joining Repair/genetics , Homologous Recombination/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Ubiquitin-Protein Ligases/genetics
17.
Cancer Res ; 79(19): 4869-4881, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31311807

ABSTRACT

Cancer metastasis, a leading cause of death in patients, is associated with aberrant expression of epigenetic modifiers, yet it remains poorly defined how epigenetic readers drive metastatic growth and whether epigenetic readers are targetable to control metastasis. Here, we report that bromodomain-containing protein 4 (BRD4), a histone acetylation reader and emerging anticancer therapeutic target, promotes progression and metastasis of gastric cancer. The abundance of BRD4 in human gastric cancer tissues correlated with shortened metastasis-free gastric cancer patient survival. Consistently, BRD4 maintained invasiveness of cancer cells in vitro and their dissemination at distal organs in vivo. Surprisingly, BRD4 function in this context was independent of its putative transcriptional targets such as MYC or BCL2, but rather through stabilization of Snail at posttranslational levels. In an acetylation-dependent manner, BRD4 recognized acetylated lysine 146 (K146) and K187 on Snail to prevent Snail recognition by its E3 ubiquitin ligases FBXL14 and ß-Trcp1, thereby inhibiting Snail polyubiquitination and proteasomal degradation. Accordingly, genome-wide transcriptome analyses identified that BRD4 and Snail regulate a partially shared metastatic gene signature in gastric cancer cells. These findings reveal a noncanonical posttranscriptional regulatory function of BRD4 in maintaining cancer growth and dissemination, with immediate translational implications for treating gastric metastatic malignancies with clinically available bromodomain inhibitors. SIGNIFICANCE: These findings reveal a novel posttranscriptional regulatory function of the epigenetic reader BRD4 in cancer metastasis via stabilizing Snail, with immediate translational implication for treating metastatic malignancies with clinically available bromodomain inhibitors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/4869/F1.large.jpg.


Subject(s)
Cell Cycle Proteins/metabolism , Neoplasm Invasiveness/pathology , Snail Family Transcription Factors/metabolism , Stomach Neoplasms/pathology , Transcription Factors/metabolism , Acetylation , Animals , Disease Progression , Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , Transcriptome
18.
Int J Mol Med ; 44(2): 713-724, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31173162

ABSTRACT

The present study investigated the structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. Chemical methods, high performance gel permeation chromatography, fourier transform infrared spectroscopy, nuclear magnetic resonance spectrum and gas chromatography­mass spectrometry were used to characterize the polysaccharide structure. The immunomodulatory abilities of the Maerkang L. deliciosus Gray polysaccharide (LDG­M) were also investigated. LDG­M was primarily composed of ß­D­glucose and α­D­lyxose with the ratio of 2:1. The possible structure of LDG­M had a backbone of 1,6­linked­ß­D­glucose and 1,4,6­linked­ß­D­glucose, with branches primarily composed of one (1→4)­linked­α­D­lyxose residue. The immunoregulatory activity results demonstrated that LDG­M promoted the proliferation and phagocytosis of macrophages, and induced cytokine release. LDG­M also promoted the proliferation of B cells by affecting the G0/G1, S and G2/M phases. The present study introduced LDG­M as a valuable source with unique immunoregulatory properties.


Subject(s)
Basidiomycota/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Animals , Cell Proliferation/drug effects , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Mice , Phagocytosis/drug effects , RAW 264.7 Cells
19.
Eur J Med Chem ; 175: 215-233, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31082765

ABSTRACT

α-Santonin, a sesquiterpene lactone isolated from Artemisia Santonica, possesses diverse bioactivities including antioxidant, anti-inflammation, immunosuppressive, anti-roundworm, anti-malaria, etc. However, its bioactivities are not satisfactory and need to be further optimized. Thus, many α-santonin derivatives were synthesized on the basis of rings A, B and C for the discovery of new analogues with prominent bioactivities. Herein, we reviewed and discussed the related synthetic methodologies, diverse bioactivities and structure-activity relationships (SAR) of α-santonin derivatives.


Subject(s)
Santonin/chemistry , Santonin/pharmacology , Adjuvants, Immunologic/pharmacology , Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Herbicides/pharmacology , Humans , Lipoxygenase Inhibitors/pharmacology , Peroxisome Proliferator-Activated Receptors/agonists , Plants/drug effects , Santonin/chemical synthesis , Structure-Activity Relationship , Trichomonas vaginalis/drug effects , Trypanocidal Agents/pharmacology
20.
Nat Commun ; 10(1): 1515, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944303

ABSTRACT

Akt plays indispensable roles in cell proliferation, survival and metabolism. Mechanisms underlying posttranslational modification-mediated Akt activation have been extensively studied yet the Akt interactome is less understood. Here, we report that SAV1, a Hippo signaling component, inhibits Akt, a function independent of its role in Hippo signaling. Binding to a proline-tyrosine motif in the Akt-PH domain, SAV1 suppresses Akt activation by blocking Akt's movement to plasma membrane. We further identify cancer-associated SAV1 mutations with impaired ability to bind Akt, leading to Akt hyperactivation. We also determine that MERTK phosphorylates Akt1-Y26, releasing SAV1 binding and allowing Akt responsiveness to canonical PI-3K pathway activation. This work provides a mechanism underlying MERTK-mediated Akt activation and survival signaling in kidney cancer. Akt activation drives oncogenesis and therapeutic resistance; this mechanism of Akt regulation by MERTK/SAV1 provides yet another complexity in an extensively studied pathway, and may yield prognostic information and therapeutic targets.


Subject(s)
Cell Cycle Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , c-Mer Tyrosine Kinase/metabolism , Animals , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/physiology , Female , HEK293 Cells , HeLa Cells , Heterografts , Hippo Signaling Pathway , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Mice , Mice, Nude , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...