Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(3): e25436, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333872

ABSTRACT

This work experimentally demonstrates the highly-efficient geometric and propagation metasurfaces for vortex beam emissions. These metasurfaces are respectively composed of high-aspect-ratio fin-like and cylindrical gallium nitride (GaN) meta-atoms. Remarkably, the optimized configuration of the fin-like GaN meta-atoms achieves a cross-polarization transmission efficiency of up to 99 %. Similarly, the cylindrical GaN meta-atoms exhibit an average co-polarization transmission efficiency of 97 %. Both metasurfaces, designed for vortex beam emission, exhibit annular intensity converging capabilities at distinct wavelengths in the visible. Notably, the geometric metasurface shows achromatic annular intensity distributions over a continuous wavelength range up to 100 nm, in sharp contrast to the propagation metasurface, which is subject to inherent wavelength dispersion limitations.

2.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836321

ABSTRACT

In this work, we have achieved an advancement by integrating wide-angle capacity into vortex beams with an impressive topological charge (TC) of 12. This accomplishment was realized through the meticulous engineering of a propagation-phase-designed metasurface. Comprising gallium nitride (GaN), meta-structures characterized by their high-aspect ratio, this metasurface exhibits an average co-polarization transmission efficiency, reaching a remarkable simulated value of up to 97%. The intricate spiral patterns, along with their respective quantification, have been meticulously investigated through tilt-view scanning electron microscopy (SEM) and were further analyzed through the Mach-Zehnder interferometer. A captivating revelation emerged, a distinctive petal-like interference pattern manifests prior to the metasurface's designed focal distance. The occurrence of this petal-like pattern at a specific z-axis position prompts a deliberate manipulation of the helicity of the spiral branches. This strategic helicity alteration is intrinsically tied to the achievement of a minimized donut diameter at the designed focal length. In regard to the angular capability of the device, the captured images continuously showcase prominent attributes within incident angles spanning up to 30 degrees. However, as incident angles surpass the 30-degree threshold, the measured values diverge from their corresponding theoretical projections, resulting in a progressive reduction in the completeness of the donut-shaped structure.

3.
Opt Lett ; 48(17): 4452-4455, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656526

ABSTRACT

This Letter describes the design procedure and process optimization of the electrically bifocal metalens. In our design, horizontal and vertical polarization is manipulated by applying a suitable voltage to a twisted nematic liquid crystal (TN-LC) cell. Each nanostructure is designed to be a rectangular prism, making different polarizations of light experience various phase delays, thus causing bi-focus. We selected lithographical methods to fabricate our metalens because of the minimum physical size, which can be as small as 50 nm, and the maximum aspect ratio, which is as high as 15. Furthermore, to increase the tolerance and make the sidewall vertical and smooth, we coated different characteristics of photoresist sensitivity to the upper and lower layers. After the development, the mushroom-type photoresist makes Ni easier to strip while in the lift-off process, thus increasing the quality of the whole metalens. Our experiment shows that the focal lengths and focusing efficiencies corresponding to the two polarizations are similar to the simulation results. The proposed electrically modulated bifocal metalens can be utilized in different applications and combined with other optical components.

4.
Opt Express ; 31(26): 43089-43099, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178411

ABSTRACT

We experimentally demonstrate a highly efficient metasurface-based optical vortex beam (OVB) composed of high-aspect-ratio gallium nitride (GaN) meta-structures with an exceptional simulated absolute polarization conversion efficiency (APCE) of up to 98%. A flower-like interference pattern emerges at the converging distance of the device with the helicity switching in spiral and dislocation interference patterns beyond this point, as confirmed through meticulous Mach-Zehnder interferometer analysis. The device also performs broadband capabilities across visible wavelengths. Experimentally demonstrated, the annular shape adeptly expands its diameter with increasing incident wavelengths. This phenomenon is rooted in the fascinating anomalous refractive and reflective characteristics inherent to subwavelength-period metasurfaces.

5.
Sci Adv ; 8(16): eabn5644, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35442736

ABSTRACT

Vacuum ultraviolet (VUV) light plays an essential role across science and technology, from molecular spectroscopy to nanolithography and biomedical procedures. Realizing nanoscale devices for VUV light generation and control is critical for next-generation VUV sources and systems, but the scarcity of low-loss VUV materials creates a substantial challenge. We demonstrate a metalens that both generates-by second-harmonic generation-and simultaneously focuses the generated VUV light. The metalens consists of 150-nm-thick zinc oxide (ZnO) nanoresonators that convert 394 nm (~3.15 eV) light into focused 197-nm (~6.29 eV) radiation, producing a spot 1.7 µm in diameter with a 21-fold power density enhancement as compared to the wavefront at the metalens surface. The reported metalens is ultracompact and phase-matching free, allowing substantial streamlining of VUV system design and facilitating more advanced applications. This work provides a useful platform for developing low-loss VUV components and increasing the accessibility of the VUV regime.

6.
Small Methods ; 6(4): e2101228, 2022 04.
Article in English | MEDLINE | ID: mdl-35212186

ABSTRACT

Manipulation and precise delivery of optical energies in the regions of interest within specimens require different strategies. Hence, proper control of input beam parameters is a prerequisite. One of the prominent methods is metasurface optics, capable of crafting properties of light at nanoscales. Here, the generation of an abrupt autofocusing (AAF) beam by a nanophotonic metasurface for biomedical applications is demonstrated. Fluorescence guided laser microprofiling of mouse cardiac samples is experimentally investigated, using the AAF beam to deliver optical energy selectively to specific locations. In addition, photocoagulation of ex vivo swine skin tissue is performed and observed through optical coherence tomography. The results show great potentials for integrating metasurface optics to realize miniature laser surgery instruments for wide applications in biomedicine.


Subject(s)
Lasers , Optics and Photonics , Animals , Mice , Swine
7.
Sci Rep ; 11(1): 14541, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34267286

ABSTRACT

The growth of wide-bandgap materials on patterned substrates has revolutionized the means with which we can improve the light output power of gallium nitride (GaN) light-emitting diodes (LEDs). Conventional patterned structure inspection usually relies on an expensive vacuum-system-required scanning electron microscope (SEM) or optical microscope (OM) with bulky objectives. On the other hand, ultra-thin metasurfaces have been widely used in widespread applications, especially for converging lenses. In this study, we propose newly developed, highly efficient hexagon-resonated elements (HREs) combined with gingerly selected subwavelength periods of the elements for the construction of polarization-insensitive metalenses of high performance. Also, the well-developed fabrication techniques have been employed to realize the high-aspect-ratio metalenses working at three distinct wavelengths of 405, 532, and 633 nm with respective diffraction-limited focusing efficiencies of 93%, 86%, and 92%. The 1951 United States Air Force (USAF) test chart has been chosen to characterize the imaging capability. All of the images formed by the 405-nm-designed metalens show exceptional clear line features, and the smallest resolvable features are lines with widths of 870 nm. To perform the inspection capacity for patterned substrates, for the proof of concept, a commercially available patterned sapphire substrate (PSS) for the growth of the GaN LEDs has been opted and carefully examined by the high-resolution SEM system. With the appropriately chosen metalenses at the desired wavelength, the summits of structures in the PSS can be clearly observed in the images. The PSS imaging qualities taken by the ultra-thin and light-weight metalenses with a numerical aperture (NA) of 0.3 are comparable to those seen by an objective with the NA of 0.4. This work can pioneer semiconductor manufacturing to choose the polarization-insensitive GaN metalenses to inspect the patterned structures instead of using the SEM or the bulky and heavy conventional objectives.

8.
Sci Rep ; 11(1): 6500, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33753823

ABSTRACT

Metalens is one of the most promising applications for the development of metasurfaces. A wide variety of materials have been applied to metalenses working at certain spectral bands in order to meet the requirements of high efficiency and low-cost fabrication. Among these materials, wide-bandgap gallium nitride (GaN) is one of the most promising materials considering its advantages especially in semiconductor manufacturing. In this work, GaN has been utilized to fabricate the high-performance metalenses operating at visible wavelengths of 405, 532, and 633 nm with efficiencies up to 79%, 84%, and 89%, respectively. The homemade 1951 United State Air Force (UASF) resolution test chart has also been fabricated in order to provide resolvable lines with widths as small as 870 nm. As shown in the experimental results for imaging, the metalens designed at 405 nm can provide extremely high resolution to clearly resolve the smallest lines with the nano-sized widths in the homemade resolution test chart. These extraordinary experimental results come from our successful development in design and fabrication for the metalenses composed of high-aspect-ratio GaN nanoposts with nearly vertical sidewalls.

9.
Opt Express ; 28(26): 38883-38891, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379447

ABSTRACT

In this work, a gallium nitride (GaN) metalens as a remote device has been applied to a commercially available white light-emitting diode (LED). We show the successful demonstration in fabricating the high-aspect-ratio GaN metalens capable of diffraction-limited focusing with an experimentally focusing efficiency up to 89% at the wavelength of 450 nm. The metalens can also resolve the subwavelength features as imaging. For the proof of concept, the rainbow-like phenomenon can be observed by using the remote GaN metalens to disperse the white light radiated by the white LED. The diode lasers working at various wavelengths have been employed to carefully verify the positions of colors in the rainbow-like profile. The results in this study can inspire the semiconductor manufacturing industry at integrating metalenses of various kinds and functionalities into the package of LED modules in the near future and prospect widespread applications in advanced solid-state lighting.

10.
Science ; 368(6498): 1487-1490, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32587020

ABSTRACT

The development of two-dimensional metasurfaces has shown great potential in quantum-optical technologies because of the excellent flexibility in light-field manipulation. By integrating a metalens array with a nonlinear crystal, we demonstrate a 100-path spontaneous parametric down-conversion photon-pair source in a 10 × 10 array, which shows promise for high-dimensional entanglement and multiphoton-state generation. We demonstrate two-, three- and four-dimensional two-photon path entanglement with different phases encoded by metalenses with fidelities of 98.4, 96.6, and 95.0%, respectively. Furthermore, four-photon and six-photon generation is observed with high indistinguishability of photons generated from different metalenses. Our metalens-array-based quantum photon source is compact, stable, and controllable, indicating a new platform for integrated quantum devices.

11.
Nat Nanotechnol ; 14(3): 227-231, 2019 03.
Article in English | MEDLINE | ID: mdl-30664753

ABSTRACT

A light-field camera captures both the intensity and the direction of incoming light1-5. This enables a user to refocus pictures and afterwards reconstruct information on the depth of field. Research on light-field imaging can be divided into two components: acquisition and rendering. Microlens arrays have been used for acquisition, but obtaining broadband achromatic images with no spherical aberration remains challenging. Here, we describe a metalens array made of gallium nitride (GaN) nanoantennas6 that can be used to capture light-field information and demonstrate a full-colour light-field camera devoid of chromatic aberration. The metalens array contains an array of 60 × 60 metalenses with diameters of 21.65 µm. The camera has a diffraction-limited resolution of 1.95 µm under white light illumination. The depth of every object in the scene can be reconstructed slice by slice from a series of rendered images with different depths of focus. Full-colour, achromatic light-field cameras could find applications in a variety of fields such as robotic vision, self-driving vehicles and virtual and augmented reality.

12.
Opt Express ; 26(10): 13148-13182, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801344

ABSTRACT

The research and development of optical metasurfaces has been primarily driven by the curiosity for novel optical phenomena that are unattainable from materials that exist in nature and by the desire for miniaturization of optical devices. Metasurfaces constructed of artificial patterns of subwavelength depth make it possible to achieve flat, ultrathin optical devices of high performance. A wide variety of fabrication techniques have been developed to explore their unconventional functionalities which in many ways have revolutionized the means with which we control and manipulate electromagnetic waves. The relevant research community could benefit from an overview on recent progress in the fabrication and applications of the metasurfaces. This review article is intended to serve that purpose by reviewing the state-of-the-art fabrication methods and surveying their cutting-edge applications.

13.
Nat Nanotechnol ; 13(3): 227-232, 2018 03.
Article in English | MEDLINE | ID: mdl-29379204

ABSTRACT

Metalenses consist of an array of optical nanoantennas on a surface capable of manipulating the properties of an incoming light wavefront. Various flat optical components, such as polarizers, optical imaging encoders, tunable phase modulators and a retroreflector, have been demonstrated using a metalens design. An open issue, especially problematic for colour imaging and display applications, is the correction of chromatic aberration, an intrinsic effect originating from the specific resonance and limited working bandwidth of each nanoantenna. As a result, no metalens has demonstrated full-colour imaging in the visible wavelength. Here, we show a design and fabrication that consists of GaN-based integrated-resonant unit elements to achieve an achromatic metalens operating in the entire visible region in transmission mode. The focal length of our metalenses remains unchanged as the incident wavelength is varied from 400 to 660 nm, demonstrating complete elimination of chromatic aberration at about 49% bandwidth of the central working wavelength. The average efficiency of a metalens with a numerical aperture of 0.106 is about 40% over the whole visible spectrum. We also show some examples of full-colour imaging based on this design.

14.
Nano Lett ; 17(10): 6345-6352, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28892632

ABSTRACT

Metasurface-based components are known to be one of the promising candidates for developing flat optical systems. However, their low working efficiency highly limits the use of such flat components for feasible applications. Although the introduction of the metallic mirror has been demonstrated to successfully enhance the efficiency, it is still somehow limited for imaging and sensing applications because they are only available for devices operating in a reflection fashion. Here, we demonstrate three individual GaN-based metalenses working in a transmission window with extremely high operation efficiency at visible light (87%, 91.6%, and 50.6% for blue, green, and red light, respectively). For the proof of concept, a multiplex color router with dielectric metalens, which is capable of guiding individual primary colors into different spatial positions, is experimentally verified based on the design of out-of-plane focusing metalens. Our approach with low-cost, semiconductor fabrication compatibility and high working efficiency characteristics offers a way for establishing a complete set of flat optical components for a wide range of applications such as compact imaging sensors, optical spectroscopy, and high-resolution lithography, just named a few.

15.
Nat Commun ; 8(1): 187, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28775300

ABSTRACT

Among various flat optical devices, metasurfaces have presented their great ability in efficient manipulation of light fields and have been proposed for variety of devices with specific functionalities. However, due to the high phase dispersion of their building blocks, metasurfaces significantly suffer from large chromatic aberration. Here we propose a design principle to realize achromatic metasurface devices which successfully eliminate the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidences in a reflection scheme. For this proof-of-concept, we demonstrate broadband achromatic metalenses (with the efficiency on the order of ∼12%) which are capable of focusing light with arbitrary wavelength at the same focal plane. A broadband achromatic gradient metasurface is also implemented, which is able to deflect wide-band light by the same angle. Through this approach, various flat achromatic devices that were previously impossible can be realized, which will allow innovation in full-color detection and imaging.Metasurfaces suffer from large chromatic aberration due to the high phase dispersion of their building blocks, limiting their applications. Here, Wang et al. design achromatic metasurface devices which eliminate the chromatic aberration over a continuous region from 1200 to 1680 nm in a reflection schleme.

16.
Nanotechnology ; 28(42): 425301, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28714459

ABSTRACT

In this study, we propose a set of single-spot experiment to construct a comprehensive model of electron-beam lithography to describe the relation among the incident electrons, resist, and the development conditions such as durations and temperatures. Through the experiments, small feature can be achieved by performing a short-time development due to the high acceleration voltage and large depth of focus of electron-beam system. The singular point in the beginning of the development is also observed in our model and supported by the experimental data. In addition, we verify the characteristic region of each incident spot induced by the point spread function of the electron-beam system. We further fabricate the single line with narrow groove width by utilizing the results from single-spot experiment at low developing temperatures. The line is formed by arranging a series of incident points with a distance close to the characteristic radius. This method can eliminate the proximity effect effectively and thus the groove width is scaled down to 8 nm. By adopting the successful experience in the single line formation, dense array with narrow linewidth is also demonstrated under well suppression of the proximity effect. The minimum groove width of 9 nm with 30 nm pitch is achieved with 5 s development time at -10 °C. Finally, the exceptional capability of pattern transfer is presented due to the high aspect ratio of the resist.

17.
Nanoscale Res Lett ; 9(1): 596, 2014.
Article in English | MEDLINE | ID: mdl-25392706

ABSTRACT

This paper aims to investigate the light output power (LOP) of InGaN-based light-emitting diodes (LEDs) grown on patterned sapphire substrates (PSSs) with different symmetry. The GaN epitaxial layers grown on the hexagonal lattice arrangement PSS (HLAPSS) have a lower compressive strain than the ones grown on the square lattice arrangement PSS (SLAPSS). The quantum-confined Stark effect (QCSE) is also affected by the residual compressive strain. Based on the experimentally measured data and the ray tracing simulation results, the InGaN-based LED with the HLAPSS has a higher LOP than the one with the SLAPSS due to the weaker QCSE within multiple-quantum wells (MQWs).

18.
Opt Express ; 21(24): 30065-73, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24514556

ABSTRACT

This paper demonstrates that quantum-confined Stark effect (QCSE) within the multiple quantum wells (MQWs) can be suppressed by the growths of InGaN-based light-emitting diodes (LEDs) on the nano-sized patterned c-plane sapphire substrates (PCSSs) with reducing the space. The efficiency droop is also determined by QCSE. As verified by the experimentally measured data and the ray-tracing simulation results, the suppressed efficiency droop for the InGaN-based LED having the nano-sized PCSS with a smaller space of 200 nm can be acquired due to the weaker function of the QCSE within the MQWs as a result of the smaller polarization fields coming from the lower compressive strain in the corresponding epitaxial layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...