Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1396183, 2024.
Article in English | MEDLINE | ID: mdl-38726299

ABSTRACT

Aboveground biomass (AGB) is regarded as a critical variable in monitoring crop growth and yield. The use of hyperspectral remote sensing has emerged as a viable method for the rapid and precise monitoring of AGB. Due to the extensive dimensionality and volume of hyperspectral data, it is crucial to effectively reduce data dimensionality and select sensitive spectral features to enhance the accuracy of rice AGB estimation models. At present, derivative transform and feature selection algorithms have become important means to solve this problem. However, few studies have systematically evaluated the impact of derivative spectrum combined with feature selection algorithm on rice AGB estimation. To this end, at the Xiaogang Village (Chuzhou City, China) Experimental Base in 2020, this study used an ASD FieldSpec handheld 2 ground spectrometer (Analytical Spectroscopy Devices, Boulder, Colorado, USA) to obtain canopy spectral data at the critical growth stage (tillering, jointing, booting, heading, and maturity stages) of rice, and evaluated the performance of the recursive feature elimination (RFE) and Boruta feature selection algorithm through partial least squares regression (PLSR), principal component regression (PCR), support vector machine (SVM) and ridge regression (RR). Moreover, we analyzed the importance of the optimal derivative spectrum. The findings indicate that (1) as the growth stage progresses, the correlation between rice canopy spectrum and AGB shows a trend from high to low, among which the first derivative spectrum (FD) has the strongest correlation with AGB. (2) The number of feature bands selected by the Boruta algorithm is 19~35, which has a good dimensionality reduction effect. (3) The combination of FD-Boruta-PCR (FB-PCR) demonstrated the best performance in estimating rice AGB, with an increase in R² of approximately 10% ~ 20% and a decrease in RMSE of approximately 0.08% ~ 14%. (4) The best estimation stage is the booting stage, with R2 values between 0.60 and 0.74 and RMSE values between 1288.23 and 1554.82 kg/hm2. This study confirms the accuracy of hyperspectral remote sensing in estimating vegetation biomass and further explores the theoretical foundation and future direction for monitoring rice growth dynamics.

2.
Front Plant Sci ; 15: 1404238, 2024.
Article in English | MEDLINE | ID: mdl-38799101

ABSTRACT

The Soil Plant Analysis Development (SPAD) is a vital index for evaluating crop nutritional status and serves as an essential parameter characterizing the reproductive growth status of winter wheat. Non-destructive and accurate monitorin3g of winter wheat SPAD plays a crucial role in guiding precise management of crop nutrition. In recent years, the spectral saturation problem occurring in the later stage of crop growth has become a major factor restricting the accuracy of SPAD estimation. Therefore, the purpose of this study is to use features selection strategy to optimize sensitive remote sensing information, combined with features fusion strategy to integrate multiple characteristic features, in order to improve the accuracy of estimating wheat SPAD. This study conducted field experiments of winter wheat with different varieties and nitrogen treatments, utilized UAV multispectral sensors to obtain canopy images of winter wheat during the heading, flowering, and late filling stages, extracted spectral features and texture features from multispectral images, and employed features selection strategy (Boruta and Recursive Feature Elimination) to prioritize sensitive remote sensing features. The features fusion strategy and the Support Vector Machine Regression algorithm are applied to construct the SPAD estimation model for winter wheat. The results showed that the spectral features of NIR band combined with other bands can fully capture the spectral differences of winter wheat SPAD during the reproductive growth stage, and texture features of the red and NIR band are more sensitive to SPAD. During the heading, flowering, and late filling stages, the stability and estimation accuracy of the SPAD model constructed using both features selection strategy and features fusion strategy are superior to models using only a single feature strategy or no strategy. The enhancement of model accuracy by this method becomes more significant, with the greatest improvement observed during the late filling stage, with R2 increasing by 0.092-0.202, root mean squared error (RMSE) decreasing by 0.076-4.916, and ratio of performance to deviation (RPD) increasing by 0.237-0.960. In conclusion, this method has excellent application potential in estimating SPAD during the later stages of crop growth, providing theoretical basis and technical support for precision nutrient management of field crops.

4.
Front Plant Sci ; 14: 1284235, 2023.
Article in English | MEDLINE | ID: mdl-38192693

ABSTRACT

Aboveground biomass (AGB) is a crucial physiological parameter for monitoring crop growth, assessing nutrient status, and predicting yield. Texture features (TFs) derived from remote sensing images have been proven to be crucial for estimating crops AGB, which can effectively address the issue of low accuracy in AGB estimation solely based on spectral information. TFs exhibit sensitivity to the size of the moving window and directional parameters, resulting in a substantial impact on AGB estimation. However, few studies systematically assessed the effects of moving window and directional parameters for TFs extraction on rice AGB estimation. To this end, this study used Unmanned aerial vehicles (UAVs) to acquire multispectral imagery during crucial growth stages of rice and evaluated the performance of TFs derived with different grey level co-occurrence matrix (GLCM) parameters by random forest (RF) regression model. Meanwhile, we analyzed the importance of TFs under the optimal parameter settings. The results indicated that: (1) the appropriate window size for extracting TFs varies with the growth stages of rice plant, wherein a small-scale window demonstrates advantages during the early growth stages, while the opposite holds during the later growth stages; (2) TFs derived from 45° direction represent the optimal choice for estimating rice AGB. During the four crucial growth stages, this selection improved performance in AGB estimation with R2 = 0.76 to 0.83 and rRMSE = 13.62% to 21.33%. Furthermore, the estimation accuracy for the entire growth season is R2 =0.84 and rRMSE =21.07%. However, there is no consensus regarding the selection of the worst TFs computation direction; (3) Correlation (Cor), Mean, and Homogeneity (Hom) from the first principal component image reflecting internal information of rice plant and Contrast (Con), Dissimilarity (Dis), and Second Moment (SM) from the second principal component image expressing edge texture are more important to estimate rice AGB among the whole growth stages; and (4) Considering the optimal parameters, the accuracy of texture-based AGB estimation slightly outperforms the estimation accuracy based on spectral reflectance alone. In summary, the present study can help researchers confident use of GLCM-based TFs to enhance the estimation accuracy of physiological and biochemical parameters of crops.

6.
Sensors (Basel) ; 19(17)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466268

ABSTRACT

Human falls are the premier cause of fatal and nonfatal injuries among older adults. The health outcome of a fall event is largely dependent on rapid response and rescue of the fallen elder. Being able to provide an accurate and fast fall detection will dramatically improve the health outcomes of the older population and reduce the associated healthcare cost after a fall. To achieve the goal, a multi-features semi-supervised support vector machines (MFSS-SVM) algorithm utilizing measurements from structural floor vibration obtained through accelerometers is proposed in this study to detect falling events with limited labeled samples. In this MFSS-SVM algorithm, the peak value, energy, and correlation coefficient of the accelerometer signal are used as classification features. The performance of the proposed algorithm was validated with laboratory experiments among activities including falling, walking, free jumping, rhythmic jumping, bag dropping, and ball dropping. To further illustrate the performance of the algorithm, a benchmark database was adopted and expanded to test its ability to accurately identify falling, compared with the algorithm used in the benchmark study. Results show that by using the proposed algorithm, the falling events can be identified with high accuracy and confidence, even with small training datasets and test nodes.


Subject(s)
Accidental Falls/prevention & control , Support Vector Machine , Vibration , Walking/physiology , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...