Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1301051, 2023.
Article in English | MEDLINE | ID: mdl-38143759

ABSTRACT

Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.


Subject(s)
Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Atherosclerosis/metabolism , Apoptosis , Cytokines
2.
Pharmaceutics ; 13(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34834276

ABSTRACT

The purpose of this study was to examine antibiotic drug transport from a hydrogel drug delivery system (DDS) using a computational model and a 3D model of the eye. Hydrogel DDSs loaded with vancomycin (VAN) were synthesized and release behavior was characterized in vitro. Four different compartmental and four COMSOL models of the eye were developed to describe transport into the vitreous originating from a DDS placed topically, in the subconjunctiva, subretinally, and intravitreally. The concentration of the simulated DDS was assumed to be the initial concentration of the hydrogel DDS. The simulation was executed over 1500 and 100 h for the compartmental and COMSOL models, respectively. Based on the MATLAB model, topical, subconjunctival, subretinal and vitreous administration took most (~500 h to least (0 h) amount of time to reach peak concentrations in the vitreous, respectively. All routes successfully achieved therapeutic levels of drug (0.007 mg/mL) in the vitreous. These models predict the relative build-up of drug in the vitreous following DDS administration in four different points of origin in the eye. Our model may eventually be used to explore the minimum loading dose of drug required in our DDS leading to reduced drug use and waste.

SELECTION OF CITATIONS
SEARCH DETAIL
...