Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705958

ABSTRACT

Among the various physiological signals, electrocardiogram (ECG) is a valid criterion for the classification of various exercise fatigue. In this study, we combine features extracted by deep neural networks with linear features from ECG and heart rate variability (HRV) for exercise fatigue classification. First, the ECG signals are converted into 2-D images by using the short-term Fourier transform (STFT), and image features are extracted by the visual geometry group (VGG) . The extracted image and linear features of ECG and HRV are sent to the different types of classifiers to distinguish distinct exercise fatigue level. To validate performance, the proposed methods are tested on (i) an open-source EPHNOGRAM dataset and (ii) a self-collected dataset (n = 51). The results reveal that the classification based on the concatenated features has the highest accuracy, and the calculation time of the system is also significantly reduced. This demonstrates that the proposed novel hybrid approach can be used to assist in improving the accuracy and timeliness of exercise fatigue classification in a real-time exercise environment. The experimental results show that the proposed method outperforms other recent state-of-the-art methods in terms of accuracy 96.90%, sensitivity 96.90%, F1-score of 0.9687 in EPHNOGRAM and accuracy 92.17%, sensitivity 92.63%, F1-score of 0.9213 in self-collected dataset.

2.
Front Public Health ; 10: 1009152, 2022.
Article in English | MEDLINE | ID: mdl-36438220

ABSTRACT

The transmission of SARS-CoV-2 leads to devastating COVID-19 infections around the world, which has affected both human health and the development of industries dependent on social gatherings. Sports events are one of the subgroups facing great challenges. The uncertainty of COVID-19 transmission in large-scale sports events is a great barrier to decision-making with regard to reopening auditoriums. Policymakers and health experts are trying to figure out better policies to balance audience experiences and COVID-19 infection control. In this study, we employed the generalized SEIR model in conjunction with the Wells-Riley model to estimate the effects of vaccination, nucleic acid testing, and face mask wearing on audience infection control during the 2021 Chinese Football Association Super League from 20 April to 5 August. The generalized SEIR modeling showed that if the general population were vaccinated by inactive vaccines at an efficiency of 0.78, the total number of infectious people during this time period would decrease from 43,455 to 6,417. We assumed that the general population had the same odds ratio of entering the sports stadiums and becoming the audience. Their infection probabilities in the stadium were further estimated by the Wells-Riley model. The results showed that if all of the 30,000 seats in the stadium were filled by the audience, 371 audience members would have become infected during the 116 football games in the 2021 season. The independent use of vaccination and nucleic acid testing would have decreased this number to 79 and 118, respectively. The combined use of nucleic acid testing and vaccination or face mask wearing would have decreased this number to 14 and 34, respectively. The combined use of all three strategies could have further decreased this number to 0. According to the modeling results, policymakers can consider the combined use of vaccination, nucleic acid testing, and face mask wearing to protect audiences from infection when holding sports events, which could create a balance between audience experiences and COVID-19 infection control.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Masks , COVID-19/prevention & control , SARS-CoV-2 , Vaccination
3.
Materials (Basel) ; 12(12)2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31226794

ABSTRACT

Nitrogen hybridization is an attractive way to enhance the wettability and electric conductivity of porous carbon, which increases the capacitance of carbon-based supercapacitor, however, there is lack of low-cost methods to prepare the nitrogen-doped porous carbon materials. Herein, a novel facile nitrogen-containing bio-phenolic resin was synthesized by polymerization of the carbamate bio-oil, Phenol and paraformaldehyde. As a precursor of nitrogen-doped porous carbon, the nitrogen-containing bio-phenol resin was activated by the one-step molten-salt method. The resultant nitrogen-doped porous carbon showed a high specific surface area up to 1401 m2·g-1. As a supercapacitor electrode, the nitrogen-doped porous carbons showed specific capacitance of 159 F·g-1 at 0.5 A·g-1. It also exhibited high cyclic stability with 94.8% retention of the initial specific capacitance over 1000 charge-discharge cycles at 1.0 A·g-1. The results suggest that these nitrogen-containing bio-phenol resin provide a new source of nitrogen-doped porous carbon for high-performance supercapacitor electrodes.

4.
Cancer Med ; 5(9): 2442-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27431358

ABSTRACT

The objective of the study was to investigate the expression and functions of CASC9 in esophageal squamous cell carcinoma (ESCC). Long noncoding RNAs (lncRNAs) upregulated in ESCC tissues were detected by RNA sequencing. Expression of CASC9 was determined from clinical samples and cell lines by qRT-PCR. The effects of CASC9 knockdown on migration and invasion were evaluated by wound healing assay, cell migration and invasion assays in vitro. We found that the lncRNA, CASC9, was markedly upregulated in ESCC tissues. Furthermore, knockdown of CASC9 significantly suppressed cell migration and invasion in vitro. Furthermore, enhanced CASC9 expression level was correlated with differentiation. The results indicated that CASC9 is significantly upregulated in ESCC tissues and may represent a new marker of poor prognosis and a potential therapeutic target for esophageal cancer intervention.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , RNA, Long Noncoding/genetics , Adult , Aged , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cluster Analysis , Female , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , High-Throughput Nucleotide Sequencing , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Staging
5.
Fish Physiol Biochem ; 42(3): 935-46, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26721661

ABSTRACT

Osmoregulation plays an important role in the migration process of catadromous fish. The osmoregulatory mechanisms of tropical marbled eel (Anguilla marmorata), a typical catadromous fish, did not gain sufficient attention, especially at the molecular level. In order to enrich the protein database of A. marmorata, a proteomic analysis has been carried out by iTRAQ technique. Among 1937 identified proteins in gill of marbled eel, the expression of 1560 proteins (80 %) was quantified. Compared with the protein expression level in the gill of marbled eel in freshwater (salinity of 0 ‰), 336 proteins were up-regulated and 67 proteins were down-regulated in seawater (salinity of 25 ‰); 33 proteins were up-regulated and 32 proteins were down-regulated in brackish water (salinity of 10 ‰). These up-regulated proteins including Na(+)/K(+)-ATPase, V-type proton ATPase, sodium-potassium-chloride co-transporter and heat shock protein 90 were enriched in many KEGG-annotated pathways, which are related to different functions of the gill. The up-regulated oxidative phosphorylation and seleno-compound metabolism pathways involve the synthesis and consumption of ATP, which represents extra energy consumption. Another identified pathway is the ribosome pathway in which a large number of up-regulated proteins are involved. It is also more notable that tight junction and cardiac muscle contraction pathways may have correlation with ion transport in gill cells. This is the first report describing the proteome of A. marmorata for acclimating to the change of salinity. These results provide a functional database for migratory fish and point out some possible new interactions on osmoregulation in A. marmorata.


Subject(s)
Acclimatization/physiology , Anguilla/metabolism , Fish Proteins/metabolism , Gills/metabolism , Animals , Osmoregulation/physiology , Protein Interaction Mapping , Proteomics , Salinity
6.
Chem Phys Lipids ; 136(1): 73-82, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15936008

ABSTRACT

The interaction of divalent cations with biomembranes is important for a number of biological processes. In this study, the regulatory effect of Ca2+ on the interaction between plant spinach photosystem I (PSI) particles and negatively charged lipid phosphatidylglycerol (PG) was investigated by circular dichroism (CD) spectroscopy. It was found that in the absence of CaCl2, PG causes an increase in alpha-helix and a decrease in disordered conformations of protein secondary structures of PSI, the beta-sheet and turns being almost unaffected. Meanwhile, the same effect also enhances the excitonic interactions relating to Chl a and Chl b from the PSI core complex and external antenna light-harvesting complex (LHCI). By contrast, in the presence of CaCl2, PG hardly interferes with the structure of the proteins' skeleton of PSI, but it can depress the excitonic interactions for Chl b of LHCI and for PSI core complex Chl a at (-) 433.5 nm of the CD signal which is accompanied by a blue shift of its peak. It is most likely that the neutralization of the phosphate groups in the PSI-PG complex and the negative surface charges of PSI, and partial dehydration in the vicinity of the ester CO region of the PG polar head group by the Ca-ions modify the interaction between PSI and PG, thereby inducing molecular reorganization of protein and pigments within both the external antenna LHCI and PSI core complex in proteoliposomes.


Subject(s)
Calcium Chloride/pharmacology , Liposomes/chemistry , Phosphatidylglycerols/chemistry , Photosystem I Protein Complex/drug effects , Circular Dichroism , Protein Structure, Secondary/drug effects , Spectrophotometry , Spinacia oleracea/metabolism
7.
Biophys Chem ; 115(1): 19-27, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15848280

ABSTRACT

Phosphatidylglycerol (PG) is the only anionic phospholipid in photosynthetic membrane. In this study, photosystem I (PSI) particles obtained from plant spinach were reconstituted into PG liposomes at a relatively high concentration. The results from visible absorption, fluorescence emission, and circular dichroism (CD) spectra reveal an existence of the interactions of PSI with PG. PG effect causes blue-shift and intensity decrease of Chl a peak bands in the absorption and 77 K fluorescence emission. The visible CD spectra indicate that the excitonic interactions for Chl a and Chl b molecules were enhanced upon reconstitution. Furthermore, more or less blue- or red-shift of the peaks characterized by Chl a, Chl b, and carotenoid molecules are also occurred. Simultaneously, an increase in alpha-helix and a decrease particularly in the disordered conformations of protein secondary structures are observed. In addition, the same effect also leads to somewhat more tryptophan (Trp) residues exposed to the polar environment. These results demonstrate that some alteration of molecular organization occurs within both the external antenna LHCI and PSI core complex after PSI reconstitution.


Subject(s)
Phosphatidylglycerols/pharmacology , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/drug effects , Circular Dichroism , Liposomes/chemistry , Phosphatidylglycerols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Structure, Secondary , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Tryptophan/chemistry
8.
J Photochem Photobiol B ; 78(2): 125-34, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15664499

ABSTRACT

Phosphatidylglycerol (PG) is the only anionic phospholipid in photosynthetic membrane and the important component of photosystem I (PSI). In this study, the interaction of PG with PSI particle from spinach was investigated by using reconstitution method. The results from the properties of electron transport, fluorescence emission, turbidity, and protein secondary structures in PSI complex incorporated into PG liposomes revealed the existence of PSI-PG interactions. A stimulation and an inhibition of oxygen uptake in PSI particle at a low and higher PG/chlorophyll mass ratio, respectively, were observed. Moreover, an additional enhancement and depression of electron flow in the PSI-PG complexes were occurred in the reaction medium containing CaCl2 at concentrations below and above 5 mM, the aggregation threshold of the reconstituted membranes, respectively. The results demonstrated that the maintenance of the structural optimization was needed for a stimulation of electron transport at a low PG/PSI mass ratio, while a decay of this PSI activity at high PG/PSI ratio was the result of inhibition of the energy transfer from LHCI to PSI reaction center induced by the dissociation of LHCI-680.


Subject(s)
Liposomes/chemistry , Liposomes/metabolism , Phosphatidylglycerols/metabolism , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/metabolism , Spinacia oleracea/metabolism , Biological Transport/drug effects , Calcium Chloride/pharmacology , Circular Dichroism , Electron Transport/radiation effects , Light , Liposomes/radiation effects , Oxygen/metabolism , Phosphatidylglycerols/pharmacology , Photochemistry , Protein Structure, Secondary , Spectrometry, Fluorescence , Spinacia oleracea/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...