Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(12): 3392-3395, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875628

ABSTRACT

In colloid quantum dot light-emitting diodes (QLEDs), the control of interface states between ZnO and quantum dots (QDs) plays a vital role. We present a straightforward and efficient method using a negative corona discharge to modify the QD film, creating a dipole moment at the interface of QDs and magnesium-doped ZnO (ZnMgO) for balanced charge carrier distribution within the QDs. This process boosts external quantum efficiencies in red, green, and blue QLEDs to 17.71%, 14.53%, and 9.04% respectively. Notably, optimized devices exhibit significant enhancements, especially at lower brightness levels (1000 to 10,000 cd·m-2), vital for applications in mobile displays, TV screens, and indoor lighting.

2.
Int J Mol Med ; 53(5)2024 05.
Article in English | MEDLINE | ID: mdl-38577935

ABSTRACT

Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age­related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.


Subject(s)
Histones , Transcription Factors , Humans , Cell Cycle , Histone Chaperones/genetics , Histone Chaperones/chemistry , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Retinoblastoma-Binding Protein 4/chemistry , Retinoblastoma-Binding Protein 4/metabolism , Retinoblastoma-Binding Protein 7 , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...