Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2404822, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924471

ABSTRACT

Small extracellular vesicles (sEVs) contain abundant circular RNAs (circRNAs) and are involved in cellular processes, particularly hypoxia. However, the process that packaging of circRNAs into neuronal sEVs under hypoxia is unclear. This study revealed the spatial mechanism of the Fused in Sarcoma protein (FUS) that facilitates the loading of functional circRNAs into sEVs in hypoxia neurons. It is found that FUS translocated from the nucleus to the cytoplasm and is more enriched in hypoxic neuronal sEVs than in normal sEVs. Cytoplasmic FUS formed aggregates with the sEVs marker protein CD63 in cytoplasmic stress granules (SGs) under hypoxic stress. Meanwhile, cytoplasmic FUS recruited of functional cytoplasmic circRNAs to SGs. Upon relief of hypoxic stress and degradation of SGs, cytoplasmic FUS is transported with those circRNAs from SGs to sEVs. Validation of FUS knockout dramatically reduced the recruitment of circRNAs from SGs and led to low circRNA loading in sEVs, which is also confirmed by the accumulation of circRNAs in the cytoplasm. Furthermore, it is showed that the FUS Zf_RanBP domain regulates the transport of circRNAs to sEVs by interacting with hypoxic circRNAs in SGs. Overall, these findings have revealed a FUS-mediated transport mechanism of hypoxia-related cytoplasmic circRNAs loaded into sEVs under hypoxic conditions.

2.
Cell Mol Neurobiol ; 43(2): 859-878, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35449428

ABSTRACT

The prognosis of ischemic stroke patients is highly associated with the collateral circulation. And the competing endogenous RNAs (ceRNAs) generated from different compensatory supply regions may also involve in the regulation of ischemic tissues prognosis. In this study, we found the apoptosis progress of ischemic neurons in posterior circulation-supplied regions (close to PCA, cortex2) was much slower than that in anterior circulation-supplied territory (close to ACA, cortex1) in MCAO-3-h mice. Using the RNA sequencing and functional enrichment analysis, we analyzed the difference between RNA expression profile in cortex1 and cortex2 and the related biological processes. The results indicated that the differential expressed ceRNAs in cortex1 were involved in cell process under acute injury, while the differential expressed ceRNAs in cortex2 was more likely to participate in long-term injury and repair process. Besides, by establishing the miRNA-ceRNA interaction network we further sorted out two specifically distributed miRNAs, namely mmu-miR446i-3p (in cortex1) and mmu-miR3473d (in cortex2). And the specifically increased mmu-miR3473d in cortex2 mainly involved the angiogenesis and cell proliferation after ischemic stroke, which may be the critical reason for the longer therapeutic time window in cortex2. In conclusion, the present study reported the specific changes of ceRNAs in distinct compensatory regions potentially involved in the evolution of cerebral ischemic tissues and the unbalance prognosis after stroke. It provided more evidence for the collateral compensatory effects on patients' prognosis and carried out the new targets for the ischemic stroke therapy.


Subject(s)
Ischemic Stroke , MicroRNAs , RNA, Long Noncoding , Stroke , Animals , Mice , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Stroke/genetics , Ischemic Stroke/genetics , RNA, Long Noncoding/genetics , Gene Regulatory Networks
4.
Front Neurol ; 13: 774654, 2022.
Article in English | MEDLINE | ID: mdl-35359655

ABSTRACT

Background: We aimed to develop and validate a new nomogram for predicting the risk of intracranial hemorrhage (ICH) in patients with acute ischemic stroke (AIS) after intravenous thrombolysis (IVT). Methods: A retrospective study enrolled 553 patients with AIS treated with IVT. The patients were randomly divided into two cohorts: the training set (70%, n = 387) and the testing set (30%, n = 166). The factors in the predictive nomogram were filtered using multivariable logistic regression analysis. The performance of the nomogram was assessed based on the area under the receiver operating characteristic curve (AUC-ROC), calibration plots, and decision curve analysis (DCA). Results: After multivariable logistic regression analysis, certain factors, such as smoking, National Institutes of Health of Stroke Scale (NIHSS) score, blood urea nitrogen-to-creatinine ratio (BUN/Cr), and neutrophil-to-lymphocyte ratio (NLR), were found to be independent predictors of ICH and were used to construct a nomogram. The AUC-ROC values of the nomogram were 0.887 (95% CI: 0.842-0.933) and 0.776 (95% CI: 0.681-0.872) in the training and testing sets, respectively. The AUC-ROC of the nomogram was higher than that of the Multicenter Stroke Survey (MSS), Glucose, Race, Age, Sex, Systolic blood Pressure, and Severity of stroke (GRASPS), and stroke prognostication using age and NIH Stroke Scale-100 positive index (SPAN-100) scores for predicting ICH in both the training and testing sets (p < 0.05). The calibration plot demonstrated good agreement in both the training and testing sets. DCA indicated that the nomogram was clinically useful. Conclusions: The new nomogram, which included smoking, NIHSS, BUN/Cr, and NLR as variables, had the potential for predicting the risk of ICH in patients with AIS after IVT.

5.
Circ Res ; 130(6): 907-924, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35189704

ABSTRACT

BACKGROUND: Acute ischemic stroke (AIS) is a leading cause of disability and mortality worldwide. Prediction of penumbra existence after AIS is crucial for making decision on reperfusion therapy. Yet a fast, inexpensive, simple, and noninvasive predictive biomarker for the poststroke penumbra with clinical translational potential is still lacking. We aim to investigate whether the CircOGDH (circular RNA derived from oxoglutarate dehydrogenase) is a potential biomarker for penumbra in patients with AIS and its role in ischemic neuronal damage. METHODS: CircOGDH was screened from penumbra of middle cerebral artery occlusion mice and was assessed in plasma of patients with AIS by quantitative polymerase chain reaction. Magnetic resonance imaging was used to examine the penumbra volumes. CircOGDH interacted with miR-5112 (microRNA-5112) in primary cortical neurons was detected by fluorescence in situ hybridization, RNA immunoprecipitation, and luciferase reporter assay. Adenovirus-mediated CircOGDH knockdown ameliorated neuronal apoptosis induced by COL4A4 (Gallus collagen, type IV, alpha IV) overexpression. Transmission electron microscope, nanoparticle tracking analysis, and Western blot were performed to confirm exosomes. RESULTS: CircOGDH expression was dramatically and selectively upregulated in the penumbra tissue of middle cerebral artery occlusion mice and in the plasma of 45 patients with AIS showing a 54-fold enhancement versus noncerebrovascular disease controls. Partial regression analysis revealed that CircOGDH expression was positively correlated with the size of penumbra in patients with AIS. Sequestering of miR-5112 by CircOGDH enhanced COL4A4 expression to elevate neuron damage. Additionally, knockdown of CircOGDH significantly enhanced neuronal cell viability under ischemic conditions. Furthermore, the expression of CircOGDH in brain tissue was closely related to that in the serum of middle cerebral artery occlusion mice. Finally, we found that CircOGDH was highly expressed in plasma exosomes of patients with AIS compared with those in noncerebrovascular disease individuals. CONCLUSIONS: These results demonstrate that CircOGDH is a potential therapeutic target for regulating ischemia neuronal viability, and is enriched in neuron-derived exosomes in the peripheral blood, exhibiting a predictive biomarker of penumbra in patients with AIS.


Subject(s)
Brain Ischemia , Ischemic Stroke , MicroRNAs , RNA, Circular/genetics , Stroke , Animals , Biomarkers , Brain Ischemia/genetics , Brain Ischemia/therapy , Humans , In Situ Hybridization, Fluorescence , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/therapy , Mice , MicroRNAs/metabolism , Stroke/genetics , Stroke/therapy
6.
Front Cell Dev Biol ; 8: 616590, 2020.
Article in English | MEDLINE | ID: mdl-33614626

ABSTRACT

Exosomes contribute to cell-cell communications. Emerging evidence has shown that microglial exosomes may play crucial role in regulation of neuronal functions under ischemic conditions. However, the underlying mechanisms of microglia-derived exosome biosynthesis are largely unknown. Herein, we reported that the microglial PDE1-B expression was progressively elevated in the peri-infarct region after focal middle cerebral artery occlusion. By an oxygen-glucose-deprivation (OGD) ischemic model in cells, we found that inhibition of PDE1-B by vinpocetine in the microglial cells promoted M2 and inhibited M1 phenotype. In addition, knockdown or inhibition of PDE1-B significantly enhanced the autophagic flux in BV2 cells, and vinpocetine-mediated suppression of M1 phenotype was dependent on autophagy in ischemic conditions. Co-culture of BV2 cells and neurons revealed that vinpocetine-treated BV2 cells alleviated OGD-induced neuronal damage, and treatment of BV2 cells with 3-MA abolished the observed effects of vinpocetine. We further demonstrated that ischemia and vinpocetine treatment significantly altered microglial exosome biogenesis and release, which could be taken up by recipient neurons and regulated neuronal damage. Finally, we showed that the isolated exosome per se from conditioned BV2 cells is sufficient to regulate cortical neuronal survival in vivo. Taken together, these results revealed a novel microglia-neuron interaction mediated by microglia-derived exosomes under ischemic conditions. Our findings further suggest that PDE1-B regulates autophagic flux and exosome biogenesis in microglia which plays a crucial role in neuronal survival under cerebral ischemic conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...