Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38727196

ABSTRACT

Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), a significant member of the conserved RNA-binding protein family, plays various roles in numerous physiological and pathological processes. However, the specific function of IGF2BP2 in regulating endometrial function in sheep remains largely unknown. In this study, we observed a significant upregulation in IGF2BP2 mRNA abundance in the endometrium during the luteal phase compared to the follicular phase in Hu sheep. The knockdown of IGF2BP2 resulted in accelerated cell proliferation and migration of Hu sheep endometrial stromal cells (ESCs). Moreover, RNA sequencing analysis revealed that genes with significantly altered expression in IGF2BP2 knockdown cells were predominantly enriched in endometrial receptivity-related signaling pathways, such as cytokine-cytokine receptor interaction, NOD-like receptor, PI3K-AKT, and JAK-STAT signaling pathway. Additionally, the knockdown of IGF2BP2 significantly increased the expression of matrix metalloprotein 9 (MMP9), vascular endothelial growth factor, and prolactin (PRL) in ESCs. The knockdown of IGF2BP2 was also observed to stimulate the PI3K/AKT/mTOR pathway by upregulating integrin ß4 (ITGB4) expression. Notably, the downregulation of ITGB4 attenuates IGF2BP2 knockdown-induced facilitation of proliferation and migration of Hu sheep ESCs by inhibiting the PI3K/AKT/mTOR pathway. Collectively, these findings highlight the important role of IGF2BP2 in regulating endometrial function, particularly through the modulation of ESC proliferation and migration via the PI3K/AKT/mTOR pathway.


The maintenance of normal physiological functionality of the endometrium is crucial for successful embryo implantation. Endometrial stromal cells (ESCs), as the principal components of the endometrium, play a key role in establishing optimal endometrial receptivity for embryo implantation. Despite the well-established role of IGF2BP2 in the pathogenesis of endometriosis in women, its functional impact on endometrial activity in ruminants, particularly in ovine species, remains undefined. In this study, we investigated the expression pattern of IGF2BP2 in the reproductive organs of female sheep and evaluated the potential roles and underlying mechanisms of IGF2BP2 in the function of sheep ESCs. This experiment confirmed the important role of IGF2BP2 in regulating endometrial function by modulating the proliferation and migration of Hu sheep ESCs.


Subject(s)
Cell Movement , Cell Proliferation , Endometrium , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Stromal Cells , TOR Serine-Threonine Kinases , Animals , Female , Endometrium/metabolism , Endometrium/cytology , Stromal Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Sheep , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Gene Knockdown Techniques
2.
FASEB J ; 37(7): e23044, 2023 07.
Article in English | MEDLINE | ID: mdl-37342905

ABSTRACT

RUNX1T1 (Runt-related transcription factor 1, translocated to 1) plays a wide-ranging and diverse role in cellular development, including hematopoiesis and adipogenesis. However, little is known about the function of RUNX1T1 in the skeletal muscle development. Here, we assessed the impact of RUNX1T1 on the proliferation and myogenic differentiation of goat primary myoblasts (GPMs). It was observed that RUNX1T1 is highly expressed during the early stages of myogenic differentiation and the fetal stage. Moreover, the knockdown of RUNX1T1 promotes the proliferation and inhibits myogenic differentiation and mitochondrial biogenesis of GPMs. RNA sequencing analysis revealed that significantly differentially expressed genes in RUNX1T1 knockdown cells were enriched in the calcium signaling pathway. Additionally, we discovered that RUNX1T1 regulates alternative splicing (AS) events involved in myogenesis. We also show that silencing RUNX1T1 blocked the Ca2+ -CAMK signaling pathway and reduced the expression levels of muscle-specific isoforms of recombinant rho associated coiled coil containing crotein kinase 2 (ROCK2) during myogenic differentiation, partially explaining why RUNX1T1 deficiency leads to the impairment of myotube formation. These findings suggest that RUNX1T1 is a novel regulator of myogenic differentiation that regulates the calcium signaling pathway and AS of ROCK2. Overall, our results highlight the critical role of RUNX1T1 in myogenesis and broaden our understanding of myogenic differentiation.


Subject(s)
Alternative Splicing , Calcium Signaling , Cell Differentiation/genetics , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Goats , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...