Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Lab Chip ; 22(24): 4962-4973, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36420612

ABSTRACT

Controllable mass production of monodisperse droplets plays a key role in numerous fields ranging from scientific research to industrial application. Microfluidic ladder networks show great potential in mass production of monodisperse droplets, but their design with uniform microflow distribution remains challenging due to the lack of a rational design strategy. Here an effective design strategy based on backstepping microflow analysis (BMA) is proposed for the rational development of microfluidic ladder networks for mass production of controllable monodisperse microdroplets. The performance of our BMA rule for rational microfluidic ladder network design is demonstrated by using an existing analogism-derived rule that is widely used for the design of microfluidic ladder networks as the control group. The microfluidic ladder network designed by the BMA rule shows a more uniform flow distribution in each branch microchannel than that designed by the existing rule, as confirmed by single-phase flow simulation. Meanwhile, the microfluidic ladder network designed by the BMA rule allows mass production of droplets with higher size monodispersity in a wider window of flow rates and mass production of polymeric microspheres from such highly monodisperse droplet templates. The proposed BMA rule provides new insights into the microflow distribution behaviors in microfluidic ladder networks based on backstepping microflow analysis and provides a rational guideline for the efficient development of microfluidic ladder networks with uniform flow distribution for mass production of highly monodisperse droplets. Moreover, the BMA method provides a general analysis strategy for microfluidic networks with parallel multiple microchannels for rational scale-up.


Subject(s)
Microfluidics
2.
Soft Matter ; 16(10): 2581-2593, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32083633

ABSTRACT

A simple and flexible strategy based on droplet microfluidics is developed for controllable fabrication of uniform magnetic SiO2 microparticles with highly-interconnected hierarchical porous structures for enhanced water decontamination. Uniform precursor water droplets containing surfactants and homogenized fine oil droplets with a relatively high volume ratio are generated from microfluidics as templates for microparticle synthesis via hydrolysis/condensation reaction. The SiO2 microparticles possess hierarchical porous structures, containing both mesopores with size of several nanometers, and well-controlled and highly-interconnected macropores with size of hundreds of nanometers. The SiO2 microparticles synergistically integrate fast mass transfer and large functional surface area for enhanced adsorption. To demonstrate the enhanced adsorption performances for organic dyes and toxic heavy metal ions, the microparticles are respectively used for removal of methylene blue in water, and modified with thiol-groups for removal of Pb2+ ions in water. Meanwhile, the microparticles can be easily recycled by magnetic field for reuse.

SELECTION OF CITATIONS
SEARCH DETAIL
...