Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3762, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353483

ABSTRACT

Colorectal cancers (CRCs) are prevalent worldwide, yet current treatments remain inadequate. Using chemical genetic screens, we identify that co-inhibition of topoisomerase I (TOP1) and NEDD8 is synergistically cytotoxic in human CRC cells. Combination of the TOP1 inhibitor irinotecan or its bioactive metabolite SN38 with the NEDD8-activating enzyme inhibitor pevonedistat exhibits synergy in CRC patient-derived organoids and xenografts. Mechanistically, we show that pevonedistat blocks the ubiquitin/proteasome-dependent repair of TOP1 DNA-protein crosslinks (TOP1-DPCs) induced by TOP1 inhibitors and that the CUL4-RBX1 complex (CRL4) is a prominent ubiquitin ligase acting on TOP1-DPCs for proteasomal degradation upon auto-NEDD8 modification during replication. We identify DCAF13, a DDB1 and Cullin Associated Factor, as the receptor of TOP1-DPCs for CRL4. Our study not only uncovers a replication-coupled ubiquitin-proteasome pathway for the repair of TOP1-DPCs but also provides molecular and translational rationale for combining TOP1 inhibitors and pevonedistat for CRC and other types of cancers.


Subject(s)
Colorectal Neoplasms , Topoisomerase I Inhibitors , Humans , Topoisomerase I Inhibitors/pharmacology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ligases/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , RNA-Binding Proteins
2.
Nat Commun ; 12(1): 5010, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408146

ABSTRACT

Poly(ADP)-ribosylation (PARylation) regulates chromatin structure and recruits DNA repair proteins. Using single-molecule fluorescence microscopy to track topoisomerase I (TOP1) in live cells, we found that sustained PARylation blocked the repair of TOP1 DNA-protein crosslinks (TOP1-DPCs) in a similar fashion as inhibition of the ubiquitin-proteasome system (UPS). PARylation of TOP1-DPC was readily revealed by inhibiting poly(ADP-ribose) glycohydrolase (PARG), indicating the otherwise transient and reversible PARylation of the DPCs. As the UPS is a key repair mechanism for TOP1-DPCs, we investigated the impact of TOP1-DPC PARylation on the proteasome and found that the proteasome is unable to associate with and digest PARylated TOP1-DPCs. In addition, PARylation recruits the deubiquitylating enzyme USP7 to reverse the ubiquitylation of PARylated TOP1-DPCs. Our work identifies PARG as repair factor for TOP1-DPCs by enabling the proteasomal digestion of TOP1-DPCs. It also suggests the potential regulatory role of PARylation for the repair of a broad range of DPCs.


Subject(s)
DNA Topoisomerases, Type I/metabolism , DNA/genetics , Proteasome Endopeptidase Complex/metabolism , DNA/chemistry , DNA/metabolism , DNA Damage , DNA Repair , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , HEK293 Cells , Humans , Poly ADP Ribosylation , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/genetics , Proteolysis , Ubiquitination
3.
Sci Adv ; 6(46)2020 11.
Article in English | MEDLINE | ID: mdl-33188014

ABSTRACT

Topoisomerases form transient covalent DNA cleavage complexes to perform their reactions. Topoisomerase I cleavage complexes (TOP1ccs) are trapped by camptothecin and TOP2ccs by etoposide. Proteolysis of the trapped topoisomerase DNA-protein cross-links (TOP-DPCs) is a key step for some pathways to repair these lesions. We describe a pathway that features a prominent role of the small ubiquitin-like modifier (SUMO) modification for both TOP1- and TOP2-DPC repair. Both undergo rapid and sequential SUMO-2/3 and SUMO-1 modifications in human cells. The SUMO ligase PIAS4 is required for these modifications. RNF4, a SUMO-targeted ubiquitin ligase (STUbL), then ubiquitylates the TOP-DPCs for their subsequent degradation by the proteasome. This pathway is conserved in yeast with Siz1 and Slx5-Slx8, the orthologs of human PIAS4 and RNF4.


Subject(s)
DNA Topoisomerases , Proteasome Endopeptidase Complex , Small Ubiquitin-Related Modifier Proteins , Ubiquitin , DNA/metabolism , DNA Topoisomerases/metabolism , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...