Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Biomater ; 10: rbad061, 2023.
Article in English | MEDLINE | ID: mdl-37501676

ABSTRACT

It is still a huge challenge for bone regenerative biomaterial to balance its mechanical, biological and biodegradable properties. In the present study, a new composite material including treated dentin matrix (TDM) and α-calcium sulphate hemihydrate (α-CSH) was prepared. The optimal composition ratio between TDM and α-CSH was explored. The results indicate that both components were physically mixed and structurally stable. Its compressive strength reaches up to 5.027 ± 0.035 MPa for 50%TDM/α-CSH group, similar to human cancellous bone tissues. Biological experiments results show that TDM/α-CSH composite exhibits excellent biocompatibility and the expression of osteogenic related genes and proteins (ALP, RUNX2, OPN) is significantly increased. In vivo experiments suggest that the addition of TDM for each group (10%, 30%, 50%) effectively promotes cell proliferation and osteomalacia. In addition, 50% of the TDM/α-CSH combination displays optimal osteoconductivity. The novel TDM/α-CSH composite is a good candidate for certain applications in bone tissue engineering.

2.
J Biomater Sci Polym Ed ; 34(15): 2076-2090, 2023 10.
Article in English | MEDLINE | ID: mdl-37212466

ABSTRACT

The ideal bone repair materials possess a series of properties, such as injectability, good mechanical properties and bone inducibility. In the present study, gelatin methacryloyl (GelMA) and graphene oxide (GO) were selected to prepare conductive hydrogel by changing the concentration of GelMA and GO during the cross-link process. The effects of different contents of GelMA and GO to the hydrogel performance were investigated. The results showed that the mechanical properties of the hydrogel kept 16.37 ± 1.89 KPa after adding 0.1% GO, while the conductivity was improved to 1.36 ± 0.09 µS/cm. The porosity of hydrogel before and after mineralization could reach more than 90%. The mechanical properties of mineralized hydrogel was improved significantly, could reach 26.38 ± 2.29 KPa. Cell experiments indicated that the mineralized hydrogel with electrical stimulation obviously improve the alkaline phosphatase activity of the cells. GelMA/GO conductive hydrogel could be a promising candidate for bone repair and bone tissue engineering.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/pharmacology , Tissue Engineering/methods , Electric Conductivity , Gelatin/pharmacology
3.
ACS Appl Mater Interfaces ; 15(5): 6354-6370, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36692869

ABSTRACT

Chronic inflammation caused by invasive bacterial infections severely interferes with the normal healing process of skin regeneration. Hypoxia of the infection microenvironment (IME) seriously affects the antibacterial effect of photodynamic therapy in phototherapy. To address this serious issue, a nanocatalytic hydrogel with an enhanced phototherapy effect consisting of a hydrogel polyvinyl alcohol (PVA) scaffold, MXene/CuS bio-heterojunction, and polydopamine (PDA) for photothermal antibacterial effects and promoting skin regeneration is designed. The MXene/CuS bio-heterojunction has a benign photothermal effect. Singlet oxygen (1O2) and hydroxyl radicals (·OH) were generated under near-infrared light, which made the hydrogel system have good antioxidant and antibacterial properties. The addition of PDA further improves the biocompatibility and endows the nanocatalytic hydrogel with adhesion. Additionally, in vivo assays display that the nanocatalytic hydrogel has good skin regeneration ability, including ability to kill bacteria, and promotes capillary angiogenesis and collagen deposition. This work proposes an approach for nanocatalyzed hydrogels with an activated IME response to treat wound infections by enhancing the phototherapeutic effects.


Subject(s)
Hydrogels , Wound Healing , Hydrogels/pharmacology , Skin , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...