Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.650
Filter
1.
Adv Sci (Weinh) ; : e2403665, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828870

ABSTRACT

The development of high-performance artificial synaptic neuromorphic devices poses a significant challenge in the creation of biomimetic sensing neural systems that seamlessly integrate both sensory and computational functionalities. In pursuit of this objective, promising bionic opto-olfactory co-sensory artificial synapse devices are constructed utilizing the BP-C/CNT (2D/1D) hybrid filter membrane as the resistive layer. Experimental results demonstrated that the devices seamlessly integrated the light modulation, gas detection, and biological synaptic functions into a single device while addressing the challenge with separating artificial synaptic devices from sensors. These devices offered the following advantages: 1) Simulating visual synapses, they can effectively replicate fundamental synaptic functions under both electrical and optical stimulation. 2) By emulating olfactory synapse responses to specific gases, they can achieve ultra-low detection limits and rapid identification of ethanol and acetone gases. 3) They enable photo-olfactory co-sensing simulations that mimic synaptic function under light-modulated pulse conditions in distinct gas environments, facilitating the study of synaptic learning rules and Pavlovian responses. This work provides a pioneering approach for exploring highly stable 2D BP-based optoelectronics and advancing the development of biomimetic neural systems.

2.
Nat Mater ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831130

ABSTRACT

The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, α-RuCl3, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials.

3.
Sci China Life Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38833085

ABSTRACT

Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.

4.
Asian J Androl ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38856299

ABSTRACT

ABSTRACT: Male infertility is a global issue caused by poor sperm quality, particularly motility. Enhancement of the sperm quality may improve the fertilization rate in assisted reproductive technology (ART) treatment. Scriptaid, with a novel human sperm motility-stimulating activity, has been investigated as a prospective agent for improving sperm quality and fertilization rate in ART. We evaluated the effects of Scriptaid on asthenozoospermic (AZS) semen, including its impact on motility stimulation and protective effects on cryopreservation and duration of motility, by computer-aided sperm analysis (CASA). Sperm quality improvement by Scriptaid was characterized by increased hyaluronan-binding activity, tyrosine phosphorylation, adenosine triphosphate (ATP) concentration, mitochondrial membrane potential, and an ameliorated AZS fertilization rate in clinical intracytoplasmic sperm injection (ICSI) experiments. Furthermore, our identification of active Scriptaid analogs and different metabolites induced by Scriptaid in spermatozoa lays a solid foundation for the future biomechanical exploration of sperm function. In summary, Scriptaid is a potential candidate for the treatment of male infertility in vitro as it improves sperm quality, prolongs sperm viability, and increases the fertilization rate.

5.
Front Microbiol ; 15: 1407091, 2024.
Article in English | MEDLINE | ID: mdl-38855764

ABSTRACT

Objective: The aim of the study is to investigate the function and mechanism of Zinc Gluconate (ZG) on intestinal mucosal barrier damage in antibiotics and Lipopolysaccharide (LPS)-induced mice. Methods: We established a composite mouse model by inducing intestinal mucosal barrier damage using antibiotics and LPS. The animals were divided into five groups: Control (normal and model) and experimental (low, medium, and high-dose ZG treatments). We evaluated the intestinal mucosal barrier using various methods, including monitoring body weight and fecal changes, assessing pathological damage and ultrastructure of the mouse ileum, analyzing expression levels of tight junction (TJ)-related proteins and genes, confirming the TLR4/NF-κB signaling pathway, and examining the structure of the intestinal flora. Results: In mice, the dual induction of antibiotics and LPS led to weight loss, fecal abnormalities, disruption of ileocecal mucosal structure, increased intestinal barrier permeability, and disorganization of the microbiota structure. ZG restored body weight, alleviated diarrheal symptoms and pathological damage, and maintained the structural integrity of intestinal epithelial cells (IECs). Additionally, ZG reduced intestinal mucosal permeability by upregulating TJ-associated proteins (ZO-1, Occludin, Claudin-1, and JAM-A) and downregulating MLCK, thereby repairing intestinal mucosal barrier damage induced by dual induction of antibiotics and LPS. Moreover, ZG suppressed the TLR4/NF-κB signaling pathway, demonstrating anti-inflammatory properties and preserving barrier integrity. Furthermore, ZG restored gut microbiota diversity and richness, evidenced by increased Shannon and Observed features indices, and decreased Simpson's index. ZG also modulated the relative abundance of beneficial human gut bacteria (Bacteroidetes, Firmicutes, Verrucomicrobia, Parabacteroides, Lactobacillus, and Akkermansia) and harmful bacteria (Proteobacteria and Enterobacter), repairing the damage induced by dual administration of antibiotics and LPS. Conclusion: ZG attenuates the dual induction of antibiotics and LPS-induced intestinal barrier damage and also protects the intestinal barrier function in mice.

6.
Mol Nutr Food Res ; : e2300685, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860356

ABSTRACT

SCOPE: Kaempferol (KMP), a bioactive flavonoid compound found in fruits and vegetables, contributes to human health in many ways but little is known about its relationship with muscle mass. The effect of KMP on C2C12 myoblast differentiation and the mechanisms that might underlie that effect are studied. METHODS AND RESULTS: This study finds that KMP (1, 10 µM) increases the migration and differentiation of C2C12 myoblasts in vitro. Studying the possible mechanism underlying its effect on migration, the study finds that KMP activates Integrin Subunit Beta 1 (ITGB1) in C2C12 myoblasts, increasing p-FAK (Tyr398) and its downstream cell division cycle 42 (CDC42), a protein previously associated with cell migration. Regarding differentiation, KMP upregulates the expression of myosin heavy chain (MHC) and activates IGF1/AKT/mTOR/P70S6K. Interestingly, pretreatment with an AKT inhibitor (LY294002) and siRNA knockdown of IGF1R leads to a decrease in cell differentiation, suggesting that IGF1/AKT activation is required for KMP to induce C2C12 myoblast differentiation. CONCLUSION: Together, the findings suggest that KMP enhances the migration and differentiation of C2C12 myoblasts through the ITG1B/FAK/paxillin and IGF1R/AKT/mTOR pathways. Thus, KMP supplementation might potentially be used to prevent or delay age-related loss of muscle mass and help maintain muscle health.

7.
Lancet Reg Health West Pac ; 45: 101016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699289

ABSTRACT

More than one hundred studies have used the mainland Chinese version of the MATRICS Consensus Cognitive Battery (MCCB) to assess cognition in schizophrenia, but the results of these studies, the quality of the reports, and the strength of the evidence provided in the reports have not been systematically assessed. We identified 114 studies from English-language and Chinese-language databases that used the Chinese MCCB to assess cognition in combined samples of 7394 healthy controls (HC), 392 individuals with clinical high risk for psychosis (CHR-P), 4922 with first-episode schizophrenia (FES), 1549 with chronic schizophrenia (CS), and 2925 with schizophrenia of unspecified duration. The mean difference (MD) of the composite MCCB T-score (-13.72) and T-scores of each of the seven cognitive domains assessed by MCCB (-14.27 to -7.92) were significantly lower in individuals with schizophrenia than in controls. Meta-analysis identified significantly greater cognitive impairment in FES and CS than in CHR-P in six of the seven domains and significantly greater impairment in CS than FES in the reasoning and problem-solving domain (i.e., executive functioning). The only significant covariate of overall cognitive functioning in individuals with schizophrenia was a negative association with the severity of psychotic symptoms. These results confirm the construct validity of the mainland Chinese version of MCCB. However, there were significant limitations in the strength of the evidence provided about CHR-P (small pooled sample sizes) and the social cognition domain (inconsistency of results across studies), and the quality of many reports (particularly those published in Chinese) was rated 'poor' due to failure to report sample size calculations, matching procedures or methods of handling missing data. Moreover, almost all studies were cross-sectional studies limited to persons under 60 with at least nine years of education, so longitudinal studies of under-educated, older individuals with schizophrenia are needed.

8.
Comput Struct Biotechnol J ; 24: 322-333, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38690549

ABSTRACT

Data curation for a hospital-based cancer registry heavily relies on the labor-intensive manual abstraction process by cancer registrars to identify cancer-related information from free-text electronic health records. To streamline this process, a natural language processing system incorporating a hybrid of deep learning-based and rule-based approaches for identifying lung cancer registry-related concepts, along with a symbolic expert system that generates registry coding based on weighted rules, was developed. The system is integrated with the hospital information system at a medical center to provide cancer registrars with a patient journey visualization platform. The embedded system offers a comprehensive view of patient reports annotated with significant registry concepts to facilitate the manual coding process and elevate overall quality. Extensive evaluations, including comparisons with state-of-the-art methods, were conducted using a lung cancer dataset comprising 1428 patients from the medical center. The experimental results illustrate the effectiveness of the developed system, consistently achieving F1-scores of 0.85 and 1.00 across 30 coding items. Registrar feedback highlights the system's reliability as a tool for assisting and auditing the abstraction. By presenting key registry items along the timeline of a patient's reports with accurate code predictions, the system improves the quality of registrar outcomes and reduces the labor resources and time required for data abstraction. Our study highlights advancements in cancer registry coding practices, demonstrating that the proposed hybrid weighted neural-symbolic cancer registry system is reliable and efficient for assisting cancer registrars in the coding workflow and contributing to clinical outcomes.

9.
J Gerontol Nurs ; 50(5): 43-49, 2024 May.
Article in English | MEDLINE | ID: mdl-38691116

ABSTRACT

PURPOSE: To explore care requirements of older adults with urinary incontinence (UI) and contributing factors. METHOD: This cross-sectional study used the Older Adults Urinary Incontinence Care Needs Inventory to survey participants with UI in three large-scale tertiary hospitals located in Guangzhou City, China, from January 2023 to November 2023. Statistical analyses, including analysis of variance, t tests, correlation analyses, and linear regression models, were conducted to assess factors influencing participants' care needs. RESULTS: A total of 530 older adults with UI participated in the survey and mean standardized score for overall care needs was 78.65 (SD = 5.01), with mean scores for each dimension ranging from 70.88 (SD = 10.55) for social participation needs to 82.45 (SD = 7.11) for health education needs. Factors that were found to influence incontinence care needs in older adults included age, literacy level, number of leaks, and type of disease (F = 37.07, adjusted R2 = 0.290, p < 0.001). CONCLUSION: Comprehensive care for older adults with UI, encompassing physiological, psychological, and social aspects, is crucial. It is essential to tailor care to individual needs and characteristics, taking into account factors, such as age and education, to ensure effective care. [Journal of Gerontological Nursing, 50(5), 43-49.].


Subject(s)
Urinary Incontinence , Humans , Urinary Incontinence/nursing , Cross-Sectional Studies , Aged , Female , Male , Aged, 80 and over , China , Middle Aged , Surveys and Questionnaires , Needs Assessment , Health Services Needs and Demand
10.
Food Res Int ; 183: 114199, 2024 May.
Article in English | MEDLINE | ID: mdl-38760132

ABSTRACT

In this study, we conducted an analysis of the differences in nutrient composition and protein structure among various fermented soybean products and their impacts on the gut microbiota of rats. Conventional physicochemical analysis was employed to analyze the fundamental physicochemical composition of the samples. Additionally, we utilized high-performance liquid chromatography and ELISA techniques to quantify the presence of antinutritional compounds. Fourier infrared spectroscopy was applied to delineate the protein structure, while 16 s rRNA gene sequencing was conducted to evaluate alterations in gut microbiota abundance. Subsequently, KEGG was utilized for metabolic pathway analysis. Our findings revealed that fermented soybean products improved the nutritional profile of soybeans. Notably, Douchi exhibited the highest protein content at 52.18 g/100 g, denoting a 26.58 % increase, whereas natto showed a 24.98 % increase. Douchi and natto demonstrated the most substantial relative amino acid content, comprising 50.86 % and 49.04 % of the total samples, respectively. Moreover, the levels of antinutritional factors markedly decreased post-fermentation. Specifically, the α-helix content in doujiang decreased by 13.87 %, while the random coil content in soybean yogurt surged by 132.39 %. Rats that were fed FSP showcased notable enhancements in gut microbiota and associated metabolic pathways. A strong correlation was observed between nutrient composition, protein structure, and gut microbiota abundance. This study furnishes empirical evidence supporting the heightened nutritional attributes of FSPs.


Subject(s)
Fermentation , Gastrointestinal Microbiome , Glycine max , Nutritive Value , Animals , Glycine max/chemistry , Rats , Male , Rats, Sprague-Dawley , Fermented Foods/microbiology , Soybean Proteins , Soy Foods/analysis , Soy Foods/microbiology , Amino Acids/analysis
11.
Plant Physiol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743633

ABSTRACT

The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Previous versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the highly heterozygous genome, which impeded genetic studies and breeding programs in apple. In this study, we assembled a haplotype-resolved telomere-to-telomere reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on twelve assemblies from wild and cultivated apples to investigate different types of resistance gene analogs (RGAs). Our results revealed the dynamics of the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Interestingly, our analyses demonstrated a higher prevalence of RGAs in cultivated apples than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Other types of structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR (TNL), NB-ARC-LRR (NL), and CC-NB-ARC-LRR (CNL) genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding programs.

12.
Mol Oncol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770553

ABSTRACT

Accumulation of abnormal chondroitin sulfate (CS) chains in breast cancer tissue is correlated with poor prognosis. However, the biological functions of these CS chains in cancer progression remain largely unknown, impeding the development of targeted treatment focused on CS. Previous studies identified chondroitin polymerizing factor (CHPF; also known as chondroitin sulfate synthase 2) is the critical enzyme regulating CS accumulation in breast cancer tissue. We then assessed the association between CHPF-associated proteoglycans (PGs) and signaling pathways in breast cancer datasets. The regulation between CHPF and syndecan 1 (SDC1) was examined at both the protein and RNA levels. Confocal microscopy and image flow cytometry were employed to quantify macropinocytosis. The effects of the 6-O-sulfated CS-binding peptide (C6S-p) on blocking CS functions were tested in vitro and in vivo. Results indicated that the expression of CHPF and SDC1 was tightly associated within primary breast cancer tissue, and high expression of both genes exacerbated patient prognosis. Transforming growth factor beta (TGF-ß) signaling was implicated in the regulation of CHPF and SDC1 in breast cancer cells. CHPF supported CS-SDC1 stabilization on the cell surface, modulating macropinocytotic activity in breast cancer cells under nutrient-deprived conditions. Furthermore, C6S-p demonstrated the ability to bind CS-SDC1, increase SDC1 degradation, suppress macropinocytosis of breast cancer cells, and inhibit tumor growth in vivo. Although other PGs may also be involved in CHPF-regulated breast cancer malignancy, this study provides the first evidence that a CS synthase participates in the regulation of macropinocytosis in cancer cells by supporting SDC1 expression on cancer cells.

13.
ACS Nano ; 18(22): 14176-14186, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768371

ABSTRACT

Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.

14.
RSC Adv ; 14(24): 17195-17201, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38808247

ABSTRACT

The chemical screening of an octocoral identifed as Junceella fragilis has led to the isolation of five chlorinated briarane-type diterpenoids, including three known metabolites, gemmacolide X (1), frajunolide I (2), and fragilide F (3), along with two new analogs, 12α-acetoxyfragilide F (4) and 12α-acetoxyjunceellin (5). Single-crystal X-ray diffraction analysis was carried out to determine the absolute configurations of 1 and 2, while the structures of new compounds 4 and 5 were ascertained with 2D NMR experiments. Briaranes 1 and 3-5 were active in enhancing alkaline phosphatase (ALP) activity.

15.
Acta Cardiol Sin ; 40(3): 322-330, 2024 May.
Article in English | MEDLINE | ID: mdl-38779165

ABSTRACT

Background: COVID-19 has been associated with a higher risk of developing heart failure (HF). Among the parameters derived from cardiopulmonary exercise testing (CPET), oxygen uptake efficiency slope (OUES) has become one of the most important parameters for predicting the prognosis of HF patients. However, the clinical utilization of OUES is limited owing to its variation with patient height and weight. This study aimed to evaluate the prognostic value of body surface area-adjusted OUES (OUES/BSA) in adults with HF. Methods: Thirty-six HF patients (mean age, 57 ± 12 years; 30 men) undergoing CPET between July 2019 and May 2020 who were followed up for 12 months were enrolled. The endpoints were major cardiovascular (CV) events, including hospitalization due to acute decompensated HF, left ventricular assist device implantation, heart transplantation, and cardiovascular-related death. We analyzed the correlations between clinical/CPET variables and major CV events. Results: Among the analyzed CPET variables, OUES/BSA had better correlation with maximal oxygen uptake (VO2max) than other variables. In univariate Cox proportional analysis, OUES/BSA and peak VO2 were both significant independent prognostic factors. The cutoff value of OUES/BSA was 595 ml/min/m2 with an area under the curve of 0.929. The patients with OUES/BSA < 595 ml/min/m2 had a lower CV event-free survival rate at 12 months of follow-up compared with the other group (33.3% and 100%, respectively; log-rank test, p < 0.001). Conclusions: BSA-adjusted OUES is an effective independent predictor for prognosis in HF patients and can be an alternative to peak VO2 for risk stratification in HF patients, regardless of exercise intensity. However, further large-scale studies are required to validate our findings.

16.
J Microbiol Biotechnol ; 34(6): 1-12, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38783703

ABSTRACT

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that is currently difficult to treat effectively. Both Bacillus natto (BN) and ginseng-soluble dietary fiber (GSDF) are anti-inflammatory and helps sustain the intestinal barrier. In this study, the protective effects and mechanism of the combination of B. natto JLCC513 and ginseng-soluble dietary fiber (BG) in DSS-induced UC mice were investigated. Intervention with BG worked better than taking BN or GSDF separately, as evidenced by improved disease activity index, colon length, and colon injury and significantly reduced the levels of oxidative and inflammatory factors (LPS, ILs, and TNF-α) in UC mice. Further mechanistic study revealed that BG protected the intestinal barrier integrity by maintaining the tight junction proteins (Occludin and Claudin1) and inhibited the LPS/TLR4/NF-κB pathway in UC mice. In addition, BG increased the abundance of beneficial bacteria such as Bacteroides and Turicibacter and reduced the abundance of harmful bacteria such as Allobaculum in the gut microbiota of UC mice. BG also significantly upregulated genes related to linoleic acid metabolism in the gut microbiota. These BGinduced changes in the gut microbiota of mice with UC were significantly correlated with changes in pathological indices. In conclusion, this study demonstrated that BG exerts protective effect against UC by regulating the LPS/TLR4/NF-κB pathway and the structure and metabolic function of gut microbiota. Thus, BG can be potentially used in intestinal health foods to treat UC.

17.
J Chem Inf Model ; 64(10): 4373-4384, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38743013

ABSTRACT

Artificial intelligence-based methods for predicting drug-target interactions (DTIs) aim to explore reliable drug candidate targets rapidly and cost-effectively to accelerate the drug development process. However, current methods are often limited by the topological regularities of drug molecules, making them difficult to generalize to a broader chemical space. Additionally, the use of similarity to measure DTI network links often introduces noise, leading to false DTI relationships and affecting the prediction accuracy. To address these issues, this study proposes an Adaptive Iterative Graph Optimization (AIGO)-DTI prediction framework. This framework integrates atomic cluster information and enhances molecular features through the design of functional group prompts and graph encoders, optimizing the construction of DTI association networks. Furthermore, the optimization of graph structure is transformed into a node similarity learning problem, utilizing multihead similarity metric functions to iteratively update the network structure to improve the quality of DTI information. Experimental results demonstrate the outstanding performance of AIGO-DTI on multiple public data sets and label reversal data sets. Case studies, molecular docking, and existing research validate its effectiveness and reliability. Overall, the method proposed in this study can construct comprehensive and reliable DTI association network information, providing new graphing and optimization strategies for DTI prediction, which contribute to efficient drug development and reduce target discovery costs.


Subject(s)
Algorithms , Molecular Docking Simulation , Artificial Intelligence , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Drug Discovery/methods
18.
Front Pharmacol ; 15: 1390294, 2024.
Article in English | MEDLINE | ID: mdl-38720773

ABSTRACT

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

19.
Front Pharmacol ; 15: 1406127, 2024.
Article in English | MEDLINE | ID: mdl-38720779

ABSTRACT

Introduction: Ganoderma lucidum: (G. lucidum, Lingzhi) is a medicinal and edible homologous traditional Chinese medicine that is used to treat various diseases, including Alzheimer's disease and mood disorders. We previously reported that the sporoderm-removed G. lucidum spore extract (RGLS) prevented learning and memory impairments in a rat model of sporadic Alzheimer's disease (sAD), but the effect of RGLS on depression-like behaviors in this model and its underlying molecular mechanisms of action remain unclear. Method: The present study investigated protective effects of RGLS against intracerebroventricular streptozotocin (ICV-STZ)-induced depression in a rat model of sAD and its underlying mechanism. Effects of RGLS on depression- and anxiety-like behaviors in ICV-STZ rats were assessed in the forced swim test, sucrose preference test, novelty-suppressed feeding test, and open field test. Results: Behavioral tests demonstrated that RGLS (360 and 720 mg/kg) significantly ameliorated ICV-STZ-induced depression- and anxiety-like behaviors. Immunofluorescence, Western blot and enzyme-linked immunosorbent assay results further demonstrated that ICV-STZ rats exhibited microglia activation and neuroinflammatory response in the medial prefrontal cortex (mPFC), and RGLS treatment reversed these changes, reflected by the normalization of morphological changes in microglia and the expression of NF-κB, NLRP3, ASC, caspase-1 and proinflammatory cytokines. Golgi staining revealed that treatment with RGLS increased the density of mushroom spines in neurons. This increase was associated with elevated expression of brain-derived neurotrophic protein in the mPFC. Discussion: In a rat model of ICV-STZ-induced sAD, RGLS exhibits antidepressant-like effects, the mechanism of which may be related to suppression of the inflammatory response modulated by the NF-κB/NLRP3 pathway and enhancement of synaptic plasticity in the mPFC.

20.
BMC Anesthesiol ; 24(1): 130, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580909

ABSTRACT

BACKGROUND: Skin mottling is a common manifestation of peripheral tissue hypoperfusion, and its severity can be described using the skin mottling score (SMS). This study aims to evaluate the value of the SMS in detecting peripheral tissue hypoperfusion in critically ill patients following cardiac surgery. METHODS: Critically ill patients following cardiac surgery with risk factors for tissue hypoperfusion were enrolled (n = 373). Among these overall patients, we further defined a hypotension population (n = 178) and a shock population (n = 51). Hemodynamic and perfusion parameters were recorded. The primary outcome was peripheral hypoperfusion, defined as significant prolonged capillary refill time (CRT, > 3.0 s). The characteristics and hospital mortality of patients with and without skin mottling were compared. The area under receiver operating characteristic curves (AUROC) were used to assess the accuracy of SMS in detecting peripheral hypoperfusion. Besides, the relationships between SMS and conventional hemodynamic and perfusion parameters were investigated, and the factors most associated with the presence of skin mottling were identified. RESULTS: Of the 373-case overall population, 13 (3.5%) patients exhibited skin mottling, with SMS ranging from 1 to 5 (5, 1, 2, 2, and 3 cases, respectively). Patients with mottling had lower mean arterial pressure, higher vasopressor dose, less urine output (UO), higher CRT, lactate levels and hospital mortality (84.6% vs. 12.2%, p < 0.001). The occurrences of skin mottling were higher in hypotension population and shock population, reaching 5.6% and 15.7%, respectively. The AUROC for SMS to identify peripheral hypoperfusion was 0.64, 0.68, and 0.81 in the overall, hypotension, and shock populations, respectively. The optimal SMS threshold was 1, which corresponded to specificities of 98, 97 and 91 and sensitivities of 29, 38 and 67 in the three populations (overall, hypotension and shock). The correlation of UO, lactate, CRT and vasopressor dose with SMS was significant, among them, UO and CRT were identified as two major factors associated with the presence of skin mottling. CONCLUSION: In critically ill patients following cardiac surgery, SMS is a very specific yet less sensitive parameter for detecting peripheral tissue hypoperfusion.


Subject(s)
Cardiac Surgical Procedures , Hypotension , Shock, Septic , Humans , Critical Illness , Cardiac Surgical Procedures/adverse effects , Hypotension/diagnosis , Hypotension/complications , Lactates
SELECTION OF CITATIONS
SEARCH DETAIL
...