Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 155(4): 2492-2502, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38587431

ABSTRACT

The swim bladder in some teleost fish functions to transfer the sound energy of acoustic stimuli to the inner ears. This study uses the auditory evoked potential tests, micro-computed tomography scanning, reconstruction, and numerical modeling to assess the contribution of the swim bladder to hearing in crucian carp (Carassius carassius). The auditory evoked potential results show that, at the tested frequency range, the audiogram of fish with an intact swim bladder linearly increases, ranging from 100 to 600 Hz. Over this frequency, the sound pressure thresholds have a local lowest value at 800 Hz. The mean auditory threshold of fish with an intact swim bladder is lower than that of fish with a deflated swim bladder by 0.8-20.7 dB. Furthermore, numerical simulations show that the received pressure of the intact swim bladders occurs at a mean peak frequency of 826 ± 13.6 Hz, and no peak response is found in the deflated swim bladders. The increased sensitivity of reception in sound pressure and acceleration are 34.4 dB re 1 µPa and 40.3 dB re 1 m·s-2 at the natural frequency of swim bladder, respectively. Both electrophysiological measurement and numerical simulation results show that the swim bladder can potentially extend hearing bandwidth and further enhance auditory sensitivity in C. carassius.


Subject(s)
Carps , Animals , Urinary Bladder , X-Ray Microtomography , Hearing , Hearing Tests
2.
J Acoust Soc Am ; 153(6): 3192, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37279060

ABSTRACT

The investigation of the large yellow croaker (Larimichthys crocea) deserves more attention due to its high commercial value as an important aquaculture fish species. This study was initiated by deploying a passive acoustic monitoring device to record the calls from the L. crocea during the spawning process in an aquaculture facility. The subsequent analysis suggested the croakers produced at least two types of calls with considerable energy distributed up to 1000 Hz. The acoustic data and the computed tomography scanning of an adult croaker were used to develop a numerical model to address the directivity of the calls at frequencies up to 1000 Hz. The radiation patterns at all frequencies were assigned with respective weights and then combined to estimate an overall acoustic radiation pattern for both types of the calls. The backward transmission was greater for both types of calls by 1.85 dB on average. The reduction of size by 20% in the swim bladder resulted in a stronger sidelobe in the frontal direction, indicating its influence on call directivity. These results provided information on the directivity of the croaker calls and understanding of fish acoustics.


Subject(s)
Perciformes , Animals , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...