Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 173974, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38897467

ABSTRACT

Monitoring surface vegetation is essential for environmental protection, disaster prevention, and carbon sequestration in forests. However, optical remote-sensing methods and their derivative technologies typically fail to fully meet this requirement due to constraints such as lighting and weather. Radar vegetation indices (RVIs), developed based on microwave remote-sensing data, describe the dielectric properties and morphological structure of vegetation and have been applied for vegetation monitoring at various scales. This technical review is the first to systematically summarize RVIs; it analyzes and discusses their principles, developments, categories and applications, and provides a comprehensive guide for their use. Additionally, the challenges faced by RVIs, as well as their applicability, were analyzed, and future improvements and development trends were carefully projected. The selection of RVIs must consider the type of data used, the terrain and location of the study area, and the major vegetation types. The effectiveness of RVIs applied to vegetation monitoring can be affected by various factors, including index performance, sensor type, study area, and data type and quality. These factors reduce the reliability and robustness of results, as well as guide the improvement direction of RVIs. The development of technologies, such as artificial intelligence, in remote sensing offers new possibilities for RVIs, enabling the removal of background scattering, improvement in interpretation accuracy, and reduction in application thresholds. Additionally, the development trends in high resolution, multi-polarization, multi-base, multi-dimensional, and networked synthetic aperture radar (SAR) and their satellite platforms offer data support for the next generation of RVIs. The rapid development of RVIs strongly supports the use of surface vegetation monitoring and terrestrial ecosystem research.

2.
Front Sports Act Living ; 5: 1289140, 2023.
Article in English | MEDLINE | ID: mdl-38116386

ABSTRACT

The purpose of this article is to adopt a customer-centric perspective the and introduce digital twin technology as a solution for mega-sport event management. This conceptual model article focuses on the potentially drastic role of digital twin technology in modern sports events, explaining in detail different aspects of its impact. The main research question is "How (and why) do sports venue digital twin emerging technologies prospectively impact the sports spectators" customer experiences?" It contributes to understanding how and why sports venue digital twins make events more customer-centred by enhancing fan experiences and engagement. Subsequently, it aims to position digital twin technology as an innovative solution for mega-sport event management across various customer experience touchpoints. By examining the intersection of digital twins and sports events from a customer-centric lens, this article will elucidate the intricacies involved in leveraging this emerging technology to transform stakeholder and fan experiences at major sporting events. Finally, we outline and explain the obstacles, challenges, opportunities, and perspectives of digital twin technology at an intersection with sports events from a customer-centric perspective. The use of digital twins potentially enables the creation of hyper-realistic virtual replicas of sports venues, providing immersive and personalized experiences for spectators. This technology allows event organizers to optimize resource allocation, streamline logistics, and improve operational efficiency.

3.
Materials (Basel) ; 16(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37049190

ABSTRACT

Microbiologically influenced corrosion (MIC) is a common phenomenon in water treatment, shipping, construction, marine and other industries. Sulfate-reducing bacteria (SRB) often lead to MIC. In this paper, a strain of Pseudomonas stutzeri (P. stutzeri) with the ability to inhibit SRB corrosion is isolated from the soil through enrichment culture. P. stutzeri is a short, rod-shaped, white and transparent colony with denitrification ability. Our 16SrDNA sequencing results verify the properties of P. stutzeri strains. The growth conditions of P. stutzeri bacteria and SRB are similar, and the optimal culture conditions are about 30 °C, pH 7, and the stable stage is reached in about seven days. The bacteria can coexist in the same growth environment. Using the weight loss method, electrochemical experiments and composition analysis techniques we found that P. stutzeri can inhibit the corrosion of X70 steel by SRB at 20~40 °C, pH 6~8. Furthermore, long-term tests at 3, 6 and 9 months reveal that P. stutzeri can effectively inhibit the corrosion of X70 steel caused by SRB.

4.
J Chromatogr A ; 1675: 463122, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35623190

ABSTRACT

A high-throughput proteomic workflow with good sensitivity and reproducibility is highly demanding for proteomic studies of large clinical cohorts. We present a workflow that seamlessly integrates the zwitter-ionic monolith-based spintip (ZIM-Tip) with the Evosep One liquid chromatography system to address this challenge. Disposable ZIM-Tips were prepared with satisfying permeability based on photo-initiated free radical polymerization. Sample preparation steps, including ion-exchange-based protein concentration, reduction, alkylation, and enzymatic digestion, were processed on the ZIM-Tips in 2 h with about 10% sample loss. The peptides recovered from ZIM-Tips were directly loaded on Evotips for desalting and proteomic data acquisition. In one-hour high performance liquid chromatography-MS/MS run, more than 4000 proteins were consistently identified from 1 µg of cell lysate using timsTOF Pro-mass spectrometer in data-dependent acquisition mode (DDA). At least 20 samples with protein amount of 1 µg could be processed each day. Good intra- and inter-day precision in quantification were demonstrated with median coefficient of variation (CV) values of less than 20% and 30%, respectively. The average Pearson correlation coefficients of each two sets of samples are 0.934 and 0.901, respectively. Collectively, the ZIM-Tip technology offers an useful solution for clinical cohort studies with demand for large sample amounts and low sample input while maintaining in-depth proteome coverage.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Humans , Proteome/analysis , Proteomics/methods , Reproducibility of Results
5.
Anal Chim Acta ; 1201: 339615, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35300801

ABSTRACT

Insufficient chromatographic performance results in reduced utilization of MS/MS scan capacity of advanced MS instruments. Improvement in peptide separation in liquid chromatography is critical for increasing the sensitivity and quantification performance of LC-MS-based proteomics. However, existing column fabrication methods suffer from slow packing, large dead volume, and band broadening. Herein, we reported that directly pulling emitter tips within short frits after fast packing (termed "filled tip") can minimize the dead volume, improving ionization efficiency and reducing band broadening. Within 10 min, our method can pack over 10 cm for 50 µm I.D. capillary columns under 6-8 MPa and over 50 cm for 75 µm I.D. long capillary columns under 70 MPa. We can identify an average of 3043 protein groups and 33 309 peptide-spectrum matches (PSMs) from 1 ng of HeLa digest using a 50 µm I.D. x 20 cm "filled tip" column, with good reproducibility. The number of protein groups increased by 50% and 96% when compared with a 50 µm I.D. "void tip" column and a 100 µm I.D. column with a manually pulled tip, respectively. We identified an average of 5534 protein groups and 71 769 PSMs from 10 ng of HeLa digest. In addition, using 75 µm I.D. x 50 cm "filled tip" columns, we can identify on average 8829 protein groups and 170 751 PSMs in single-shot data-dependent acquisition analysis from 500 ng of 293T digested peptides. Importantly, good repeatability and reproducibility of "filled tip" method were verified by results from columns fabricated in three batches and by different persons. When compared with conventional columns with "void tips", "filled tip" columns reduced median full peak widths by 19% and alleviated sampling redundancy by 10%. Collectively, we developed an easy-to-use, versatile and robust column fabrication method for both narrow-bore and long capillary columns, which achieved great sensitivity and depth in proteomic analysis.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid , Humans , Peptides , Reproducibility of Results
6.
Analyst ; 145(20): 6441-6446, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32785396

ABSTRACT

An easy-to-use and fast approach was developed for integrated proteomic and metabolic profiling in a dried single-drop plasma sample. Plasma collection, room temperature storage, and sample preparation for both proteins and metabolites were seamlessly integrated in one spintip device. MS-based multiomic profiling using the same nano LC-MS system identified more than 150 proteins and 160 metabolites from the 1 µL plasma sample in 6 hours. Further combination with micro-flow LC and targeted MS made it a promising approach for the fast profiling of molecular biomarkers with high sensitivity and accuracy.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid , Metabolomics , Plasma
SELECTION OF CITATIONS
SEARCH DETAIL
...