Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Lett ; 268: 106869, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788802

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory intestinal disease that affects people around the world. The primary cause of IBD is an imbalance in the host immune response to intestinal flora. Several human genes, including IL10, STAT3, IRGM, ATG16L1, NOD2 and RUNX3, are associated with inappropriate immune responses in IBD. It has been reported that homozygous Runx3-knockout (ko) mice spontaneously develop colitis. However, the high mortality rate in these mice within the first two weeks makes it challenging to study the role of Runx3 in colitis. To address this issue, a spontaneous colitis (SC) mouse model carrying a C-terminal truncated form of Runx3 with Tyr319stop point mutation has been generated. After weaning, SC mice developed spontaneous diarrhea and exhibited prominent enlargement of the colon, accompanied by severe inflammatory cell infiltration. Results of immunofluorescence staining showed massive CD4+ T cell infiltration in the inflammatory colon of SC mice. Colonic IL-17A mRNA expression and serum IL-17A level were increased in SC mice. CD4+ T cells from SC mice produced stronger IL-17A than those from wildtype mice in Th17-skewing conditions in vitro. In addition, the percentages of Foxp3+ Treg cells as well as the RORγt+Foxp3+ Treg subset, known for its role in suppressing Th17 response in the gut, were notably lower in colon lamina propria of SC mice than those in WT mice. Furthermore, transfer of total CD4+ T cells from SC mice, but not from wildtype mice, into Rag1-ko host mice resulted in severe autoimmune colitis. In conclusion, the C-terminal truncated Runx3 caused autoimmune colitis associated with Th17/Treg imbalance. The SC mouse model is a feasible approach to investigate the effect of immune response on spontaneous colitis.

2.
Inorg Chem ; 62(4): 1570-1579, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36656719

ABSTRACT

A new copper indium selenide, Ba3.5Cu7.55In1.15Se9, was synthesized by the KBr flux reaction at 800 °C. The compound crystallizes with orthorhombic Pnma, a = 46.1700(12) Å, b = 4.26710(10) Å, c = 19.8125(5) Å, and Z = 8. The structural framework mainly consists of four sites of cubane-type defective M4Se3 (M = Cu, Cu/In) units with disordered Cu+/In3+ ions present at the part corner of each unit. The single crystal emits intense photoluminescence at 657 nm with a relative quantum yield (RQY) 0.2 times that of rhodamine 6G powder. The compound belongs to a direct band gap at 1.91 eV, analyzed by Tauc's plot, and the energy is close to the PL position. The Hall effect measurement on a pressed pellet reveals an n-type conductivity with a carrier concentration of 3.358 × 1017 cm-3 and a mobility of 24.331 cm2 V-1 s-1. Furthermore, the compound produces a strong nonlinear third-harmonic generation (THG), with an χS(3) value of 1.3 × 105 pm2/V2 comparable to 1.6 × 105 pm2/V2 for AgGaSe2 measured at 800 nm.

3.
Sci Rep ; 12(1): 4851, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35318363

ABSTRACT

Among many transition-metal oxides, Fe3O4 anode based lithium ion batteries (LIBs) have been well-investigated because of their high energy and high capacity. Iron is known for elemental abundance and is relatively environmentally friendly as well contains with low toxicity. However, LIBs based on Fe3O4 suffer from particle aggregation during charge-discharge processes that affects the cycling performance. This study conjectures that iron agglomeration and material performance could be affected by dopant choice, and improvements are sought with Fe3O4 nanoparticles doped with 0.2% Ti. The electrochemical measurements show a stable specific capacity of 450 mAh g-1 at 0.1 C rate for at least 100 cycles in Ti doped Fe3O4. The stability in discharge capacity for Ti doped Fe3O4 is achieved, arising from good electronic conductivity and stability in microstructure and crystal structure, which has been further confirmed by density functional theory (DFT) calculation. Detailed distribution function of relaxation times (DFRTs) analyses based on the impedance spectra reveal two different types of Li ion transport phenomena, which are closely related with the electron density difference near the two Fe-sites. Detailed analyses on EIS measurements using DFRTs for Ti doped Fe3O4 indicate that improvement in interfacial charge transfer processes between electrode and Li metal along with an intermediate lithiated phase helps to enhance the electrochemical performance.

4.
PNAS Nexus ; 1(4): pgac127, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36714876

ABSTRACT

Pectin polymers are considered for lithium-ion battery electrodes. To understand the performance of pectin as an applied buffer layer, the electrical, magnetic, and optical properties of pectin films are investigated. This work describes a methodology for creating pectin films, including both pristine pectin and Fe-doped pectin, which are optically translucent, and explores their potential for lithium-ion battery application. The transmission response is found extended in optimally Fe-doped pectin, and prominent modes for cation bonding are identified. Fe doping enhances the conductivity observed in electrochemical impedance spectroscopy, and from the magnetic response of pectin evidence for Fe3+ is identified. The Li-ion half-cell prepared with pectin as binder for anode materials such as graphite shows stable charge capacity over long cycle life, and with slightly higher specific capacity compare with the cell prepared using polyvinylidene fluoride (PVDF) as binder. A novel enhanced charging specific capacity at a high C-rate is observed in cells with pectin binder, suggesting that within a certain rate (∼5 C), pectin has higher capacity at faster charge rates. The pectin system is found as a viable base material for organic-inorganic synthesis studies.

5.
Demography ; 55(1): 223-247, 2018 02.
Article in English | MEDLINE | ID: mdl-29192387

ABSTRACT

The developing world is rapidly urbanizing, but an understanding of how child health differs across urban and rural areas is lacking. We examine the association between area of residence and child health in India, focusing on composition and selection effects. Simple height-for-age averages show that rural Indian children have the poorest health and urban children have the best, with slum children in between. With wealth or observed health environment held constant, the urban height-for-age advantage disappears, and slum children fare significantly worse than their rural counterparts. Hence, differences in composition across areas mask a substantial negative association between living in slums and height-for-age. This association is more negative for girls than boys. Furthermore, a large number of girls are "missing" in slums; we argue that this implies that the negative association between living in slums and health is even stronger than our estimate. The missing girls also help explain why slum girls appear to have a substantially lower mortality than rural girls, whereas slum boys have a higher mortality risk than rural boys. We estimate that slum conditions (such as overcrowding and open sewers), which the survey does not adequately capture, are associated with 20 % to 37 % of slum children's stunting risk.


Subject(s)
Child Health/statistics & numerical data , Child Mortality/trends , Poverty Areas , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Age Factors , Body Weights and Measures , Child , Environment , Female , Health Surveys , Humans , India/epidemiology , Male , Sex Factors , Sex Ratio
6.
Sci Rep ; 6: 35635, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762297

ABSTRACT

Inflammatory bowel disease is a chronic and progressive inflammatory intestinal disease that includes two major types, namely ulcerative colitis and Crohn's disease (CD). CD is characterized by intestinal epithelial hyperplasia and inflammatory cell infiltration. Transfer of CD25-CD45RBhiCD4+ (naïve) T cells into immunodeficiency mice induces autoimmune colitis with pathological lesions similar to CD and loss of body weight 4 weeks after cell transfer. However, weight loss neither has sufficient sensitivity nor totally matches the pathological findings of CD. To establish an early and sensitive indicator of autoimmune colitis model, the transferred T cell-induced colitis mouse model was modified by transferring luciferase-expressing donor T cells and determining the colitis by in vivo imaging system (IVIS). Colitis was detected with IVIS 7-10 days before the onset of body weight loss and diarrhea. IVIS was also applied in the dexamethasone treatment trial, and was a more sensitive indicator than body weight changes. All IVIS signals were parallel to the pathological abnormalities of the gut and immunological analysis results. In summary, IVIS provides both sensitive and objective means to monitor the disease course of transferred T cell-induced CD and fulfills the 3Rs principle of humane care of laboratory animals.


Subject(s)
Adoptive Transfer , Autoimmune Diseases/diagnosis , Colitis/diagnosis , Intravital Microscopy/methods , Optical Imaging/methods , T-Lymphocytes/immunology , Animals , Autoimmune Diseases/complications , Colitis/complications , Diarrhea/etiology , Disease Models, Animal , Intestines/pathology , Mice , Weight Loss
7.
Article in English | MEDLINE | ID: mdl-23007760

ABSTRACT

Barium titanate-based microwave dielectrics usually require relatively high temperatures to sinter, which prevents the use of base metals such as copper for electrodes. In this work, BaTi(4)O(9) microwave dielectric ceramics co-fired with copper electrodes are made possible by adding B-Si-Ba- Zn-O glass to induce liquid-phase sintering at sufficiently low temperature and in reduced atmosphere. The microstructures and electric properties of the BaTi(4)O(9) ceramics thus obtained are carefully examined and studied. Proper glass composition may significantly facilitate mass transportation in the low-temperature co-fired ceramic (LTCC) material, resulting in better densification without serious degradation of electric properties. Although the B2O3/SiO2 ratio enhances the glass mobility during sintering, the BaO/ZnO ratio contributes to the chemical affinity of glass to BaTi(4)O(9) ceramics. In addition, various Ba-Ti-O phases with different Ba/Ti ratios may be found in the specimen through the X-ray diffraction patterns when the BaO/ZnO ratio is varied. If the BaO/ZnO ratio is high and the glass flows easily in the material, the Ba(4)Ti(13)O(30) phase is formed. If the BaO/ZnO ratio is low and the glass flows easily in the material, the BaTi(6)O(13) phase appears. We find that glass-induced Ba(4)Ti(13)O(30) transformation may significantly decrease Qxf values in the BT4-BSBZ materials. Therefore, the appropriate glass composition must be selected to ensure the phase stability of dielectrics to achieve the best performance possible.

SELECTION OF CITATIONS
SEARCH DETAIL
...