Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Transl Med ; 22(1): 237, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439045

ABSTRACT

BACKGROUND: Intratumoral bacteria might play essential roles in tumorigenesis in different cancer types. However, its features and potential roles in hepatocellular carcinoma (HCC) are largely unknown. METHODS: In this study, we assessed bacterial RNA by 16S rRNA fluorescence in situ hybridization and detected bacterial lipopolysaccharide (LPS) via immunohistochemistry. Hepa1-6 cells were used to establish orthotopic HCC models in mice. 2bRAD sequencing for microbiome was performed to determine the intratumoral bacterial characteristics, and liquid chromatography-mass spectrometry was conducted to explore the metabolic profile. The potential association between different intratumoral microbiota and metabolites were evaluated. RESULTS: We detected bacterial 16S rRNA and LPS in HCC tissues from the patients with HCC. In HCC mouse model, we found that the intratumor bacteria in HCC tissues were significantly different to adjacent nontumor tissues. Furthermore, we observed different metabolites in HCC tissues and adjacent nontumor tissues, such as N-acetyl-D-glucosamine and a-lactose. Our results showed that several bacteria were significantly associated with metabolites, such as Pseudomonas koreensis, which was positively correlated with N-acetyl-D-glucosamine and negatively correlated with citrulline. CONCLUSIONS: This study confirmed the close association between different bacteria and metabolites, which might provide novel opportunities for developing new biomarkers and therapeutic targets for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/genetics , RNA, Ribosomal, 16S/genetics , Acetylglucosamine , In Situ Hybridization, Fluorescence , Lipopolysaccharides/pharmacology , Mice, Inbred Strains , Bacteria
2.
Heliyon ; 9(6): e17223, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37389070

ABSTRACT

Background: Liver hepatocellular carcinoma (LIHC), a variety of highly-aggressive malignancy, has been the major cause of cancer-related mortality. Recent studies have shown that oxysterol-binding protein-like 3 (OSBPL3) plays a crucial role in human cancers. Nevertheless, the specific functional roles and potential clinical values of OSBPL3 in LIHC are not completely known. Methods: Multiple web portals and publicly available tools were used in this study. Comprehensive expression files of OSBPL3 in pan-cancers and the relationship between OSBPL3 expression and clinical traits of patients with LIHC were investigated using TCGA database through UALCAN platform. TIMER database was used to investigate the effect of OSBPL3 on the tumor immune infiltration status in LIHC. Moreover, LinkedOmics, STRING databases, and Gene Ontology analysis were utilized to select OSBPL3-related differentially expressed genes (DEGs) and construct a protein-protein interaction (PPI) network. Results: Upregulated OSBPL3 was observed in LIHC tumor tissues compared with that in normal controls, especially in patients with higher grades and more advanced stages. Furthermore, overexpressed OSBPL3 was closely associated with poor clinical outcomes of patients with LIHC. Six hub genes were selected from the PPI network, which were significantly increased in LIHC and closely associated with poor prognosis. Pathway enrichment showed that OSBPL3-related DEGs were primarily enriched in protein binding, mitotic cytokinesis, inorganic anion transport, and I-kappaB kinase/NF-kappaB signaling processes. Conclusions: OSBPL3 exerts critical functions in hepatocarcinogenesis and it could serve as an available biomarker and effective treatment target for LIHC.

3.
Front Oncol ; 13: 1176572, 2023.
Article in English | MEDLINE | ID: mdl-37305578

ABSTRACT

Background: Tumor-related macrophages (TAMs) have emerged as an essential part of the immune regulatory network in hepatocellular carcinoma (HCC). Constructing a TAM-related signature is significant for evaluating prognosis and immunotherapeutic response of HCC patients. Methods: Informative single-cell RNA sequencing (scRNA-seq) dataset was obtained from the Gene Expression Omnibus (GEO) database, and diverse cell subpopulations were identified by clustering dimension reduction. Moreover, we determined molecular subtypes with the best clustering efficacy by calculating the cumulative distribution function (CDF). The ESTIMATE method, CIBERSORT (cell-type identification by estimating relative subsets of RNA transcripts) algorithm and publicly available tumor immune dysfunction and exclusion (TIDE) tools were used to characterize the immune landscape and tumor immune escape status. A TAM-related gene risk model was constructed through Cox regression and verified in multiple datasets and dimensions. We also performed functional enrichment analysis to detect potential signaling pathways related to TAM marker genes. Results: In total, 10 subpopulations and 165 TAM-related marker genes were obtained from the scRNA-seq dataset (GSE149614). After clustering 3 molecular subtypes based on TAM-related marker genes, we found significantly different prognostic survival and immune signatures among the three subtypes. Subsequently, a 9-gene predictive signature (TPP1, FTL, CXCL8, CD68, ATP6V1F, CSTB, YBX1, LGALS3, and APLP2) was identified as an independent prognostic factor for HCC patients. Those patients with high RiskScore had a lower survival rate and benefited less from immunotherapy than those with low RiskScore. Moreover, more samples of the Cluster C subtype were enriched in the high-risk group, with higher tumor immune escape incidence. Conclusions: We constructed a TAM-related signature with excellent efficacy for predicting prognostic survival and immunotherapeutic responses in HCC patients.

4.
Cell Metab ; 35(8): 1304-1326, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37352864

ABSTRACT

Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases. The levels or ratios of Trp metabolites are significantly associated with many clinical features. Additionally, studies have shown that disease progression can be controlled by modulating Trp metabolism. Indoleamine-2,3-dioxygenase, Trp-2,3-dioxygenase, kynurenine-3-monooxygenase, and Trp hydroxylase are the rate-limiting enzymes that are critical for Trp metabolism. These key regulatory enzymes can be targeted for treating several diseases, including tumors. These findings provide novel insights into the treatment of diseases. In this review, we have summarized the recent research progress on the role of Trp metabolites in health and disease along with their clinical applications.


Subject(s)
Dioxygenases , Neoplasms , Humans , Kynurenine/metabolism , Tryptophan/metabolism
5.
Research (Wash D C) ; 6: 0107, 2023.
Article in English | MEDLINE | ID: mdl-37040299

ABSTRACT

Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.

6.
Adv Sci (Weinh) ; 10(16): e2207074, 2023 06.
Article in English | MEDLINE | ID: mdl-37013458

ABSTRACT

Kynurenine derivative 3-hydroxyanthranilic acid (3-HAA) is known to regulate the immune system and exhibit anti-inflammatory activity by inhibiting T-cell cytokine secretion and influencing macrophage activity. However, the definite role of 3-HAA in the immunomodulation of hepatocellular carcinoma (HCC) is largely unexplored. An orthotopic HCC model and treated with 3-HAA by intraperitoneal injection is developed. Furthermore, cytometry by time-of-flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) analyses are carried out to define the immune landscape of HCC. It is found that 3-HAA treatment can significantly suppress tumor growth in the HCC model and alter the level of various cytokines in plasma. CyTOF data shows that 3-HAA significantly increases the percentage of F4/80hi CX3CR1lo Ki67lo MHCIIhi macrophages and decreases the percentage of F4/80lo CD64+ PD-L1lo macrophages. scRNA-seq analyses demonstrate that 3-HAA treatment is proved to regulate the function of M1 macrophages, M2 macrophages, and proliferating macrophages. Notably, 3-HAA inhibits the proinflammatory factors TNF and IL-6 in multiple cell subsets, including resident macrophages, proliferating macrophages, and pDCs. This study reveals the landscape of immune cell subsets in HCC in response to 3-HAA, indicating that 3-HAA may be a promising therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Single-Cell Gene Expression Analysis , Macrophages , Cytokines/pharmacology
8.
Clin. transl. oncol. (Print) ; 25(2): 293-305, feb. 2023. ilus
Article in English | IBECS | ID: ibc-215929

ABSTRACT

Increasingly advanced biology technique has revealed that long non-coding RNAs (lncRNA) as critical factors that exert significant regulatory effects on biological functions by modulating gene transcription, epigenetic modifications and protein translation. A newly emerging lncRNA, ladybird homeobox 2 (LBX2)-antisense RNA 1 (LBX2-AS1), was found to be highly expressed in various tumors. Moreover, it is functionally linked to the regulation of essential tumor-related biological processes, such as cell proliferation and apoptosis, through interactions with multiple signaling molecules/pathways. The important roles played by LBX2-AS1 in cancer initiation and progression suggest that this lncRNA has enormous clinical potential for use as a novel biomarker or therapeutic target. In this article, we retrospectively review the latest advances in research exploring the roles of the lncRNA LBX2-AS1 in oncology field, highlighting its involvement in a comprehensive network of molecular mechanisms underlying diverse cancers and examining its potential applications in clinical practice (AU)


Subject(s)
Humans , Neoplasms/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Signal Transduction , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation
9.
Cell Rep Med ; 4(1): 100884, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36652905

ABSTRACT

It is estimated that in the future, the number of new cancer cases worldwide will exceed the 19.3 million recorded in 2020, and the number of deaths will exceed 10 million. Cancer remains the leading cause of human mortality and lagging socioeconomic development. Intratumoral microbes have been revealed to exist in many cancer types, including pancreatic, colorectal, liver, esophageal, breast, and lung cancers. Intratumoral microorganisms affect not only the host immune system, but also the effectiveness of tumor chemotherapy. This review concentrates on the characteristics and roles of intratumoral microbes in various tumors. In addition, the potential of therapies targeting intratumoral microbes, as well as the main challenges currently delaying these therapies, are explored. Furthermore, we briefly summarize existing technical methods used to characterize intratumoral microbes. We hope to provide ideas for exploring intratumoral microbes as potential biomarkers and targets for tumor diagnosis, treatment, and prognostication.


Subject(s)
Lung Neoplasms , Microbiota , Humans
10.
Curr Res Food Sci ; 6: 100435, 2023.
Article in English | MEDLINE | ID: mdl-36691590

ABSTRACT

The consumption of a healthy diet is critical for maintaining and promoting human health. In the context of the rapid transformation from a high-fat diet (HFD) to a Mediterranean diet (MD) leading to major systemic changes, we explored the necessity of a transitional standard diet (TSD) between these two varied diets and the adjuvant effect of probiotics. HFD-fed mice were used for studying the changes and benefits of a dietary intervention and probiotic treatment. By measuring multiple systemic alterations such as weight (group B vs. group E, P < 0.05), liver function (AST, group C vs. group E, P < 0.001), and histopathology, we found that an MD, TSD and Bifidobacterium longum all contribute to alleviating lipid deposition and liver injury. The downregulation of IL-17 (group B vs. group E, P < 0.01) and MIP-1α (group B vs. group E, P < 0.001) also demonstrated the anti-inflammatory effects of the TSD. Moreover, we performed multi-omics analysis combined with the 16S sequencing, transcriptome and metabolome results and found that the TSD increased the abundance of the Lactobacillus genus (group C vs. group E, P < 0.01) and effectively lowered lipid accumulation and systemic inflammation. Furthermore, B. longum played an important role in the synergistic effect. The results showed that a TSD might be useful for HFD-induced obesity before drastic dietary changes, and probiotics were also beneficial.

11.
Clin Transl Oncol ; 25(2): 293-305, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36131071

ABSTRACT

Increasingly advanced biology technique has revealed that long non-coding RNAs (lncRNA) as critical factors that exert significant regulatory effects on biological functions by modulating gene transcription, epigenetic modifications and protein translation. A newly emerging lncRNA, ladybird homeobox 2 (LBX2)-antisense RNA 1 (LBX2-AS1), was found to be highly expressed in various tumors. Moreover, it is functionally linked to the regulation of essential tumor-related biological processes, such as cell proliferation and apoptosis, through interactions with multiple signaling molecules/pathways. The important roles played by LBX2-AS1 in cancer initiation and progression suggest that this lncRNA has enormous clinical potential for use as a novel biomarker or therapeutic target. In this article, we retrospectively review the latest advances in research exploring the roles of the lncRNA LBX2-AS1 in oncology field, highlighting its involvement in a comprehensive network of molecular mechanisms underlying diverse cancers and examining its potential applications in clinical practice.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , Biomarkers , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Retrospective Studies , RNA, Long Noncoding/genetics , Signal Transduction
12.
Cancer Cell Int ; 22(1): 308, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217206

ABSTRACT

BACKGROUND: L-tryptophan (Trp) metabolism involved in mediating tumour development and immune suppression. However, comprehensive analysis of the role of the Trp metabolism pathway is still a challenge. METHODS: We downloaded Trp metabolism-related genes' expression data from different public databases, including TCGA, Gene Expression Omnibus (GEO) and Hepatocellular Carcinoma Database (HCCDB). And we identified two metabolic phenotypes using the ConsensusClusterPlus package. Univariate regression analysis and lasso Cox regression analysis were used to establish a risk model. CIBERSORT and Tracking of Indels by DEcomposition (TIDE) analyses were adopted to assess the infiltration abundance of immune cells and tumour immune escape. RESULTS: We identified two metabolic phenotypes, and patients in Cluster 2 (C2) had a better prognosis than those in Cluster 1 (C1). The distribution of clinical features between the metabolic phenotypes showed that patients in C1 tended to have higher T stage, stage, grade, and death probability than those of patients in C2. Additionally, we screened 739 differentially expressed genes (DEGs) between the C1 and C2. We generated a ten-gene risk model based on the DEGs, and the area under the curve (AUC) values of the risk model for predicting overall survival. Patients in the low-risk subgroup tended to have a significantly longer overall survival than that of those in the high-risk group. Moreover, univariate analysis indicated that the risk model was significantly correlated with overall survival. Multivariate analysis showed that the risk model remained an independent risk factor in hepatocellular carcinoma (p < 0.0001). CONCLUSIONS: We identified two metabolic phenotypes based on genes of the Trp metabolism pathway, and we established a risk model that could be used for predicting prognosis and guiding immunotherapy in patients with hepatocellular carcinoma.

14.
Signal Transduct Target Ther ; 7(1): 142, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484099

ABSTRACT

Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.


Subject(s)
Neoplasms , Pseudouridine , 5-Methylcytosine/metabolism , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Humans , Neoplasms/genetics , Pseudouridine/genetics , Pseudouridine/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA, Untranslated
15.
Front Immunol ; 13: 847728, 2022.
Article in English | MEDLINE | ID: mdl-35281015

ABSTRACT

HCC is one of the most common malignant tumors and has an extremely poor prognosis. Accumulating studies have shown that noncoding RNA (ncRNA) plays an important role in hepatocellular carcinoma (HCC) development. However, the details of the related mechanisms remain unclear. The heterogeneity of the tumor microenvironment (TME) calls for ample research with deep molecular characterization, with the hope of developing novel biomarkers to improve prognosis, diagnosis and treatment. ncRNAs, particularly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have been found to be correlated with HCC neogenesis and progression. In this review, we summarized the aberrant epigenetic and genetic alterations caused by dysregulated ncRNAs and the functional mechanism of classical ncRNAs in the regulation of gene expression. In addition, we focused on the role of ncRNAs in the TME in the regulation of tumor cell proliferation, invasion, migration, immune cell infiltration and functional activation. This may provide a foundation for the development of promising potential prognostic/predictive biomarkers and novel therapies for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Carcinoma, Hepatocellular/therapy , Humans , Liver Neoplasms/therapy , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Tumor Microenvironment/genetics
16.
Cancer Cell Int ; 22(1): 132, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331235

ABSTRACT

MicroRNAs (miRNAs) are one type of noncoding RNAs that interfere with mRNA translation to downregulate gene expression, which results in posttranscriptional gene silencing. Over the past two decades, miRNAs have been widely reported to impact the progression of malignant tumours by interfering with cancer initiation and progression; therefore, miRNAs represent potential new diagnostic and therapeutic tools. miR-650 is a newly identified miR, and increasing studies have demonstrated that miR-650 plays critical roles in cancer progression, such as mediating the Wnt signalling pathway/AXIN1 (axis inhibition protein 1) axis in hepatocellular carcinoma. Nevertheless, associations between the expression patterns and molecular mechanisms of miR-650 in cancer have not been comprehensively described. In this article, we review the existing evidence regarding the mechanisms by which miR-650 expression is altered and their relation to cancer. Moreover, the promising clinical application of miR-650 for diagnosis and treatment is highlighted.

17.
Front Oncol ; 12: 847745, 2022.
Article in English | MEDLINE | ID: mdl-35265529

ABSTRACT

As novel members of the noncoding RNA family, long noncoding RNAs (lncRNAs) have been widely reported to function as powerful regulators in gene expression processes, including chromosome remodeling, transcription interference and posttranscriptional modification. With the rapid development of metagenomic sequencing, numerous studies have indicated that the dysregulation of lncRNAs is closely associated with diverse human diseases, especially cancers. Prostate Gene Expression Marker 1 (PCGEM1), a recently identified lncRNA, has been reported to play a crucial role in the initiation and progression of multiple tumors by interacting with pivotal regulators of tumor-related signaling pathways. In this review, we will retrospectively review the recent studies of the expression of lncRNA PCGEM1 in human cancers and comprehensively describe the underlying regulatory mechanism by which PCGEM1 functions in tumors. More importantly, based on the relationship between PCGEM1 and cancers, the potential application of PCGEM1 in clinical diagnosis, prognosis and therapeutic treatment will also be highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...