Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(21): 25898-25908, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37191997

ABSTRACT

The heat tolerance of tumor cells induced by heat shock proteins (HSPs) is the major factor that seriously hinders further application of PTT, as it can lead to tumor inflammation, invasion, and even recurrence. Therefore, new strategies to inhibit HSPs expression are essential to improve the antitumor efficacy of PTT. Here, we prepared a novel nanoparticle inhibitor by synthesizing molecularly imprinted polymers with a high imprinting factor (3.1) on the Prussian Blue surface (PB@MIP) for combined tumor starvation and photothermal therapy. Owing to using hexokinase (HK) epitopes as the template, the imprinted polymers could inhibit the catalytic activity of HK to interfere with glucose metabolism by specifically recognizing its active sites and then achieve starvation therapy by restricting ATP supply. Meanwhile, MIP-mediated starvation downregulated the ATP-dependent expression of HSPs and then sensitized tumors to hyperthermia, ultimately improving the therapeutic effect of PTT. As the inhibitory effect of PB@MIP on HK activity, more than 99% of the mice tumors were eliminated by starvation therapy and enhanced PTT.


Subject(s)
Hyperthermia, Induced , Molecular Imprinting , Nanoparticles , Neoplasms , Animals , Mice , Molecularly Imprinted Polymers , Photothermal Therapy , Hexokinase , Neoplasms/drug therapy , Nanoparticles/chemistry , Adenosine Triphosphate
2.
Pathogens ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34684255

ABSTRACT

INTRODUCTION: Intracellular cAMP receptor exchange proteins directly activated by cAMP 1 (EPAC1) regulate obligate intracellular parasitic bacterium rickettsial adherence to and invasion into vascular endothelial cells (ECs). However, underlying precise mechanism(s) remain unclear. The aim of the study is to dissect the functional role of the EPAC1-ANXA2 signaling pathway during initial adhesion of rickettsiae to EC surfaces. METHODS: In the present study, an established system that is anatomically based and quantifies bacterial adhesion to ECs in vivo was combined with novel fluidic force microscopy (FluidFM) to dissect the functional role of the EPAC1-ANXA2 signaling pathway in rickettsiae-EC adhesion. RESULTS: The deletion of the EPAC1 gene impedes rickettsial binding to endothelium in vivo. Rickettsial OmpB shows a host EPAC1-dependent binding strength on the surface of a living brain microvascular EC (BMEC). Furthermore, ectopic expression of phosphodefective and phosphomimic mutants replacing tyrosine (Y) 23 of ANXA2 in ANXA2-knock out BMECs results in different binding force to reOmpB in response to the activation of EPAC1. CONCLUSIONS: EPAC1 modulates rickettsial adhesion, in association with Y23 phosphorylation of the binding receptor ANXA2. Underlying mechanism(s) should be further explored to delineate the accurate role of cAMP-EPAC system during rickettsial infection.

3.
J Biol Chem ; 297(5): 101315, 2021 11.
Article in English | MEDLINE | ID: mdl-34678311

ABSTRACT

Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.


Subject(s)
Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , von Willebrand Factor/metabolism , Animals , COVID-19/metabolism , Disease Models, Animal , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Inflammation/metabolism , Mice , Mice, Knockout
4.
Nanoscale ; 13(29): 12553-12564, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34477614

ABSTRACT

Chemodynamic therapy (CDT), the ability to transform H2O2 into a highly toxic hydroxyl radical (˙OH) through a Fenton or Fenton like reaction to kill cancer cells, enables selective tumor therapy. However, the effect is seriously limited by the insufficiency of endogenous H2O2 in cancer cells. Additionally, the specific recognition of epitope imprinting plays an important role in targeting cancer cell markers. In this work, we prepared H2O2 self-supplying degradable epitope molecularly imprinted polymers (MIP) for effective CDT, employing fluorescent calcium peroxide (FCaO2) as an imaging probe and a source of H2O2, the exposed peptide in the CD47 extracellular region as the template, copper acrylate as one of the functional monomers and N,N'-bisacrylylcystamine (BAC) as a cross-linker. MIP with recognition sites can specifically target CD47-positive cancer cells to achieve fluorescence imaging. Under the reduction of glutathione (GSH), the MIP were degraded and the exposed FCaO2 reacted with water to continuously produce H2O2 in the slightly acidic environment in cancer cells. The self-supplied H2O2 produced ˙OH through a Fenton like catalytic reaction mediated by copper ions in the MIP framework, inducing cancer cell apoptosis. Therefore, the MIP nano-platform, which was capable of specific recognition of the cancer cell marker, H2O2 self-supply and controlled treatment, was successfully used for targeted CDT.


Subject(s)
Hydrogen Peroxide , Polymers , Cell Line, Tumor , Epitopes , Optical Imaging
5.
mBio ; 12(3)2021 05 11.
Article in English | MEDLINE | ID: mdl-33975935

ABSTRACT

Spotted fever group rickettsioses (SFRs) are devastating human infections. Vascular endothelial cells (ECs) are the primary targets of rickettsial infection. Edema resulting from EC barrier dysfunction occurs in the brain and lungs in most cases of lethal SFR, but the underlying mechanisms remain unclear. The aim of the study was to explore the potential role of Rickettsia-infected, EC-derived exosomes (Exos) during infection. Using size exclusion chromatography (SEC), we purified Exos from conditioned, filtered, bacterium-free media collected from Rickettsia parkeri-infected human umbilical vein ECs (HUVECs) (R-ECExos) and plasma of Rickettsia australis- or R. parkeri-infected mice (R-plsExos). We observed that rickettsial infection increased the release of heterogeneous plsExos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Compared to normal plsExos and ECExos, both R-plsExos and R-ECExos induced dysfunction of recipient normal brain microvascular ECs (BMECs). The effect of R-plsExos on mouse recipient BMEC barrier function is dose dependent. The effect of R-ECExos on human recipient BMEC barrier function is dependent on the exosomal RNA cargo. Next-generation sequencing analysis and stem-loop quantitative reverse transcription-PCR (RT-qPCR) validation revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which potentially target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.IMPORTANCE Spotted fever group rickettsioses are devastating human infections. Vascular endothelial cells are the primary targets of infection. Edema resulting from endothelial barrier dysfunction occurs in the brain and lungs in most cases of lethal rickettsioses, but the underlying mechanisms remain unclear. The aim of the study was to explore the potential role of Rickettsia-infected, endothelial cell-derived exosomes during infection. We observed that rickettsial infection increased the release of heterogeneous plasma Exos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Rickettsia-infected, endothelial cell-derived exosomes induced dysfunction of human recipient normal brain microvascular endothelial cells. The effect is dependent on the exosomal RNA cargo. Next-generation sequencing analysis revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which potentially target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.


Subject(s)
Exosomes/genetics , Exosomes/physiology , Human Umbilical Vein Endothelial Cells/microbiology , Rickettsia Infections/microbiology , Animals , Human Umbilical Vein Endothelial Cells/pathology , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Rickettsia/pathogenicity , Rickettsia Infections/pathology
6.
Pathogens ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922476

ABSTRACT

The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in postmortem lung sections from COVID-19 patients and in lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence assays and Western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with a novel non-cyclic nucleotide small molecule EPAC1-specific activator reduced apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.

7.
bioRxiv ; 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32908983

ABSTRACT

Coagulopathy is associated with both inflammation and infection, including infection with the novel SARS-CoV-2 (COVID-19). Endothelial cells (ECs) fine tune hemostasis via cAMP-mediated secretion of von Willebrand factor (vWF), which promote the process of clot formation. The e xchange p rotein directly a ctivated by c AMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a key role in stabilizing ECs and suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1 -null mouse model and revealed an increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1 -/- phenotype. EPAC1 regulated TNFα-triggered vWF secretion from human umbilical vein endothelial cells (HUVECs) in a phosphoinositide 3-kinases (PI3K)/endothelial nitric oxide synthase (eNOS)-dependent manner. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro . Our data delineate a novel regulatory role of EPAC1 in vWF secretion and shed light on potential development of new strategies to controlling thrombosis during inflammation. KEY POINT: PI3K/eNOS pathway-mediated, inflammation-triggered vWF secretion is the target of the pharmacological manipulation of the cAMP-EPAC system.

8.
PLoS Negl Trop Dis ; 14(7): e0007960, 2020 07.
Article in English | MEDLINE | ID: mdl-32687500

ABSTRACT

Intracerebral microhemorrhages (CMHs) are small foci of hemorrhages in the cerebrum. Acute infections induced by some intracellular pathogens, including rickettsia, can result in CMHs. Annexin a2 (ANXA2) has been documented to play a functional role during intracellular bacterial adhesion. Here we report that ANXA2-knockout (KO) mice are more susceptible to CMHs in response to rickettsia and Ebola virus infections, suggesting an essential role of ANXA2 in protecting vascular integrity during these intracellular pathogen infections. Proteomic analysis via mass spectrometry of whole brain lysates and brain-derived endosomes from ANXA2-KO and wild-type (WT) mice post-infection with R. australis revealed that a variety of significant proteins were differentially expressed, and the follow-up function enrichment analysis had identified several relevant cell-cell junction functions. Immunohistology study confirmed that both infected WT and infected ANXA2-KO mice were subjected to adherens junctional protein (VE-cadherin) damages. However, key blood-brain barrier (BBB) components, tight junctional proteins ZO-1 and occludin, were disorganized in the brains from R. australis-infected ANXA2-KO mice, but not those of infected WT mice. Similar ANXA2-KO dependent CMHs and fragments of ZO-1 and occludin were also observed in Ebola virus-infected ANXA2-KO mice, but not found in infected WT mice. Overall, our study revealed a novel role of ANXA2 in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated tight junctions and its role in stabilizing the BBB in these deadly infections.


Subject(s)
Annexin A2/metabolism , Cerebral Hemorrhage/metabolism , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Rickettsia Infections/metabolism , Rickettsia/physiology , Animals , Annexin A2/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/microbiology , Cerebral Hemorrhage/virology , Endosomes/genetics , Endosomes/metabolism , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/virology , Humans , Mice , Mice, Knockout , Rickettsia/genetics , Rickettsia Infections/genetics , Rickettsia Infections/microbiology
9.
Lab Invest ; 100(8): 1030-1041, 2020 08.
Article in English | MEDLINE | ID: mdl-32238906

ABSTRACT

Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Hemorrhagic Fever, Ebola/metabolism , Liver/metabolism , Talin/metabolism , Vinculin/metabolism , Animals , Cells, Cultured , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Liver/microbiology , Liver/virology , Mice, Knockout , Protein Binding , Rickettsia/physiology , Spotted Fever Group Rickettsiosis/metabolism , Spotted Fever Group Rickettsiosis/microbiology , Talin/chemistry , Vinculin/chemistry
10.
bioRxiv ; 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33398280

ABSTRACT

The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection because fatal COVID-19 cases are commonly linked to respiratory failure due to ARDS. The pathologic alteration known as diffuse alveolar damage in endothelial and epithelial cells is a critical feature of acute lung injury in ARDS. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in post-mortem lung sections from COVID-19 patients and lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence (IF) assays and western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells, but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with an EPAC1-specific activator ameliorated apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.

11.
Lab Invest ; 99(11): 1650-1660, 2019 11.
Article in English | MEDLINE | ID: mdl-31253864

ABSTRACT

Understanding bacterial adhesion is challenging and critical to our understanding of the initial stages of the pathogenesis of endovascular bacterial infections. The vascular endothelial cell (EC) is the main target of Rickettsia, an obligately intracellular bacterium that causes serious systemic disease in humans and animals. But the mechanism(s) underlying bacterial adherence to ECs under shear stress from flowing blood prior to activation are unknown for any bacteria. Although host surface annexin a2 (ANXA2) has been identified to participate in efficient bacterial invasion of epithelial cells, direct evidence is lacking in the field of bacterial infections of ECs. In the present study, we employ a novel, anatomically based, in vivo quantitative bacterial-adhesion-to-vascular-EC system, combined with atomic force microscopy (AFM), to examine the role of endothelial luminal surface ANXA2 during rickettsial adherence to ECs. We also examined whether ANXA2 antibody affected binding of Staphylococcus aureus to ECs. We found that deletion of ANXA2 impeded rickettsial attachment to the ECs in vitro and blocked rickettsial adherence to the blood vessel luminal surface in vivo. The AFM studies established that EC surface ANXA2 acts as an adherence receptor for rickettsiae, and that rickettsial adhesin OmpB is the associated bacterial ligand. Furthermore, pretreatment of ECs with anti-ANXA2 antibody reduced EC surface-associated S. aureus. We conclude that the endothelial surface ANXA2 plays an important role in initiating pathogen-host interactions, ultimately leading to bacterial anchoring on the vascular luminal surface.


Subject(s)
Annexin A2/physiology , Bacterial Adhesion/physiology , Endothelial Cells/microbiology , Endothelial Cells/physiology , Animals , Annexin A2/deficiency , Annexin A2/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/physiology , Biomechanical Phenomena , Disease Models, Animal , Host Microbial Interactions/physiology , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Atomic Force , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rickettsia/pathogenicity , Rickettsia/physiology , Rickettsia Infections/microbiology , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/physiology
12.
Life Sci ; 221: 1-12, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30738042

ABSTRACT

Plasmin-mediated fibrinolysis at the surface of vascular endothelial cells (SVEC) plays a key role in maintaining vascular hemostasis, in which the cAMP pathway participates. After externalization to the SVEC, annexin A2 (ANXA2) serves as a platform for conversion of plasminogen to plasmin. Here we describe a regulatory role of the exchange protein directly activated by cAMP (EPAC) in ANXA2 externalization and vascular fibrinolysis. Knockout of EPAC1 in mice results in a decreased ANXA2 expression on the SVEC associated with increased fibrin deposition and fibrinolytic dysfunction. Reduced levels of EPAC1 are also found in endocardial tissues beneath atrial mural thrombi in patients. Notably, administration of recombinant ANXA2 ameliorates fibrinolytic dysfunction in the EPAC1-null mice. Mechanistically, EPAC1 regulates the SVEC plasminogen conversion depended on ANXA2. EPAC1 promotes tyrosine-23 phosphorylation of ANXA2, a prerequisite for its recruitment to the SVEC. Our data thus reveal a novel regulatory role for EPAC1 in vascular fibrinolysis.


Subject(s)
Annexin A2/metabolism , Fibrinolysis/physiology , Guanine Nucleotide Exchange Factors/metabolism , Animals , Cell Membrane , Cyclic AMP/metabolism , Endothelial Cells/metabolism , Endothelial Cells/physiology , Endothelium, Vascular , Fibrinolysin/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/physiology , Homeostasis , Humans , Mice , Mice, Knockout , Phosphorylation , Plasminogen/metabolism , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...