Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Bull (Beijing) ; 69(12): 1980-1990, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38719666

ABSTRACT

Estimation of evapotranspiration (ETa) change on the Tibetan Plateau (TP) is essential to address the water requirement of billions of people surrounding the TP. Existing studies have shown that ETa estimations on the TP have a very large uncertainty. In this article, we discuss how to more accurately quantify ETa amount and explain its change on the TP. ETa change on the TP can be quantified and explained based on an ensemble mean product from climate model simulations, reanalysis, as well as ground-based and satellite observations. ETa on the TP experienced a significant increasing trend of around 8.4 ± 2.2 mm (10 a)-1 (mean ± one standard deviation) during 1982-2018, approximately twice the rate of the global land ETa (4.3 ± 2.1 mm (10 a)-1). Numerical attribution analysis revealed that a 53.8% TP area with the increased ETa was caused by increased temperature and 23.1% part was due to soil moisture rising, because of the warming, melting cryosphere, and increased precipitation. The projected future increase in ETa is expected to cause a continued acceleration of the water cycle until 2100.

2.
Sensors (Basel) ; 23(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904824

ABSTRACT

This paper coupled a unified passive and active microwave observation operator-namely, an enhanced, physically-based, discrete emission-scattering model-with the community land model (CLM) in a data assimilation (DA) system. By implementing the system default local ensemble transform Kalman filter (LETKF) algorithm, the Soil Moisture Active and Passive (SMAP) brightness temperature TBp (p = Horizontal or Vertical polarization) assimilations for only soil property retrieval and both soil properties and soil moisture estimates were investigated with the aid of in situ observations at the Maqu site. The results indicate improved estimates of soil properties of the topmost layer in comparison to measurements, as well as of the profile. Specifically, both assimilations of TBH lead to over a 48% reduction in root mean square errors (RMSEs) for the retrieved clay fraction from the background compared to the top layer measurements. Both assimilations of TBV reduce RMSEs by 36% for the sand fraction and by 28% for the clay fraction. However, the DA estimated soil moisture and land surface fluxes still exhibit discrepancies when compared to the measurements. The retrieved accurate soil properties alone are inadequate to improve those estimates. The discussed uncertainties (e.g., fixed PTF structures) in the CLM model structures should be mitigated.

3.
Sci Adv ; 6(26): eaay8558, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32637590

ABSTRACT

Lake evaporation can influence basin-wide hydrological cycles and is an important factor in loss of water resources in endorheic lakes of the Tibetan Plateau. Because of the scarcity of data, published lake evaporation values are inconsistent, and their spatial distribution has never been reported. Presenting a plausible hypothesis of energy balance during the ice-free seasons, we explored the multiyear (2003-2016) average ice phenology and evaporation amounts of 75 large dimictic lakes by using a combination of meteorological and satellite data. Evaporation amounts show large variability in spatial distribution, with a pattern of higher values in the south. Lakes with higher elevation, smaller area, and higher latitude are generally associated with a shorter ice-free season and lower evaporation. The total evaporated water amounts have values of approximately 29.4 ± 1.2 km3 year-1 for the 75 studied lakes and 51.7 ± 2.1 km3 year-1 for all plateau lakes included.

4.
PLoS One ; 14(5): e0216059, 2019.
Article in English | MEDLINE | ID: mdl-31067243

ABSTRACT

Air temperature data retrieved from global atmospheric models may show a systematic bias with respect to measurements from weather stations. This is a common concern in local climate studies. The current study presents two methods based upon copulas and Conditional Probability (CP) to predict bias-corrected mean air temperature in a data-scarce environment: CP-I offers a single conditional probability as a predictor, CP-II is a pixel-wise version of CP-I and offers spatially varying predictors. The methods were applied on daily air temperature in the Qazvin Plain, Iran that were collected at 24 weather stations and 150 ECMWF ERA-interim grid cells from a single month (June) over 11 years. We compared the methods with the commonly applied conditional expectation and conditional median methods. Leave-k-out cross-validation and correlation scores show that the new methods reduced the bias with 44-68% for the full data set and with 34-74% on a homogeneous subarea. We conclude that the two methods are able to locally improve ECMWF air temperatures in a data-scarce area.


Subject(s)
Climate Change , Temperature , Agricultural Irrigation , Agriculture , Climate Change/statistics & numerical data , Data Interpretation, Statistical , Iran , Models, Statistical
5.
Sci Total Environ ; 682: 19-30, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31108267

ABSTRACT

The Lake Naivasha Basin in Kenya has experienced significant land use cover changes (LUCC) that has been hypothesized to have altered the hydrological regime in recent decades. While it is generally recognized that LUCC will impact evapotranspiration (ET), the precise nature of such impact is not very well understood. This paper describes how land use conversions among grassland and croplands have influenced ET in the Lake Naivasha Basin for the period 2003 to 2012. MODIS data products were used in combination with the European Centre for Medium-Range Weather Forecasts (ECMWF) data sets to model ET using the Surface Energy Balance System (SEBS). The results indicate that conversions from grassland to cropland accounted for increases in ET of up to 12% while conversion from cropland back to grasslands (abandonment) reduced ET by ~4%. This suggests that recently cultivated agricultural lands could increase local water demands, while abandonment of the farms could decrease the water loss and eventually increase the water availability. Also, recovery of ET following re-conversion from cropland to grassland might be impeded due to delayed recovery of soil properties since parts of the catchment are continuously being transformed with no ample time given for soil recovery. The annual ET over the 10 years shows an estimated decline from 724 mm to 650 mm (~10%). This decline is largely explained by a reduction in net radiation, an increase in actual vapour pressure whose net effect also led to decrease in the surface-air temperature difference. These findings suggest that in order to better understand LUCC effects on water resources of Lake Naivasha, it is important to take into account the effect of LUCC and climate because large scale changes of vegetation type from grassland to cropland substantially will increase evapotranspiration with implications on the water balance.


Subject(s)
Agriculture , Climate , Plant Transpiration , Kenya , Lakes , Soil/chemistry
6.
Sci Total Environ ; 639: 1220-1232, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29929289

ABSTRACT

The Three-River Source Region (TRSR) of the Tibetan Plateau (TP) is regarded as the "Chinese water tower". Climate warming and the associated degradation of permafrost might change the water cycle and affect the alpine vegetation growth in the TRSR. However, the quantitative changes in the water budget and their impacts on the vegetation in the TRSR are poorly understood. In this study, the spatial-temporal changes in the hydrological variables and the normalized difference vegetation index (NDVI) during 2003-2014 were investigated using multiple satellite data and a remote sensing energy balance model. The results indicated that precipitation showed an increasing trend at a rate of 14.0 mm 10 a-1, and evapotranspiration (ET) showed a slight decreasing trend. The GRACE-derived total water storage (TWS) change presented a significant increasing trend at a rate of 35.1 mm a-1. The change in groundwater (GW) which showed an increasing trend at a rate of 18.5 mm a-1, was estimated by water budget. The time lag of the GRACE-TWS that was influenced by precipitation was more obviously than was the GLDAS-SM (Soil Moisture) change. The vegetation in the TRSR was greening during the study period, and the accumulation of the NDVI increased rapidly after 2008. The effect of total TWS and GLDAS-SM on vegetation was considerably more than that the effects of other factors in this region. It was concluded that the hydrological cycle had obviously changed and that more soil water was transferred into the GW since the aquiclude changed due to climate warming. The increasing area and number of lakes and the thickening of the active layer in the permafrost area led to the greater infiltration of surface water into the groundwater, which resulted in increased water storage.

7.
Sci Total Environ ; 627: 417-426, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426164

ABSTRACT

The integrated SCOPE (Soil, Canopy Observation, Photochemistry and Energy balance) model, coupling radiative transfer theory and biochemistry, was applied to a biodiesel crop grown in a Spanish agricultural area. Energy fluxes and CO2 exchange were simulated with this model for the period spanning January 2008 to October 2008. Results were compared to experimental measurements performed using eddy covariance and meteorological instrumentation. The reliability of the model was proven by simulating latent (LE) and sensible (H) heat fluxes, soil heat flux (G), and CO2 exchanges (NEE and GPP). LAI data used as input in the model were retrieved from the MODIS and MERIS sensors. SCOPE was able to reproduce similar seasonal trends to those measured for NEE, GPP and LE. When considering H, the modelled values were underestimated for the period covering July 2008 to mid-September 2008. The modelled fluxes reproduced the observed seasonal evolution with determination coefficients of over 0.77 when LE and H were evaluated. The modelled results offered good agreement with observed data for NEE and GPP, regardless of whether LAI data belonged to MODIS or MERIS, showing slopes of 0.87 and 0.91 for NEE-MODIS and NEE-MERIS, and 0.91 and 0.94 for GPP-MODIS and GPP-MERIS, respectively. Moreover, SCOPE was able to reproduce similar seasonal behaviours to those observed for the experimental carbon fluxes, clearly showing the CO2 sink/source behaviour for the whole period studied.


Subject(s)
Brassica rapa/physiology , Environmental Monitoring/methods , Models, Theoretical , Carbon Cycle , Carbon Dioxide , Ecosystem , Reproducibility of Results , Spain
8.
PLoS One ; 10(9): e0137545, 2015.
Article in English | MEDLINE | ID: mdl-26332035

ABSTRACT

The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques.


Subject(s)
Conservation of Natural Resources , Remote Sensing Technology , Telemetry
9.
J Chem Phys ; 140(20): 204707, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24880311

ABSTRACT

We investigate spin-dependent thermoelectronic transport properties of a single molecule magnet Mn(dmit)2 sandwiched between two Au electrodes using first-principles density functional theory combined with nonequilibrium Green's function method. By applying a temperature difference between the two Au electrodes, spin-up and spin-down currents flowing in opposite directions can be induced due to asymmetric distribution of the spin-up and spin-down transmission spectra around the Fermi level. A pure spin current and 100% spin polarization are achieved by tuning back-gate voltage to the system. The spin caloritronics of the molecule with a perpendicular conformation is also explored, where the spin-down current is blocked strongly. These results suggest that Mn(dmit)2 is a promising material for spin caloritronic applications.

10.
Ecol Evol ; 4(1): 14-26, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24455157

ABSTRACT

Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.

11.
PLoS One ; 8(2): e56909, 2013.
Article in English | MEDLINE | ID: mdl-23451108

ABSTRACT

In this study the depth of the atmospheric boundary layer (ABL) over the Tibetan Plateau was measured during a regional radiosonde observation campaign in 2008 and found to be deeper than indicated by previously measurements. Results indicate that during fair weather conditions on winter days, the top of the mixed layers can be up to 5 km above the ground (9.4 km above sea level). Measurements also show that the depth of the ABL is quite distinct for three different periods (winter, monsoon-onset, and monsoon seasons). Turbulence at the top of a deep mixing layer can rise up to the upper troposphere. As a consequence, as confirmed by trajectory analysis, interaction occurs between deep ABLs and the low tropopause during winter over the Tibetan Plateau.


Subject(s)
Atmosphere , Tibet
12.
Sensors (Basel) ; 12(8): 9965-86, 2012.
Article in English | MEDLINE | ID: mdl-23112582

ABSTRACT

The validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture products is a crucial step in the investigation of their inaccuracies and limitations, before planning further refinements of the retrieval algorithm. Therefore, this study intended to contribute to the validation of the SMOS soil moisture products, by comparing them with the data collected in situ in the Maqu (China) and Twente (The Netherlands) regions in 2010. The seasonal behavior of the SMOS soil moisture products is generally in agreement with the in situ measurements for both regions. However, the validation analysis resulted in determination coefficients of 0.55 and 0.51 over the Maqu and Twente region, respectively, for the ascending pass data, and of 0.24 and 0.41, respectively, for the descending pass data. Moreover, a systematic dry bias of the SMOS soil moisture was found of approximately 0.13 m(3)/m(3) for the Maqu region and 0.17 m(3)/m(3) for the Twente region for ascending pass data. Several factors might have affected the retrieval accuracy, such as the presence of Radio Frequency Interference (RFI), the use of inaccurate land cover information and the presence of frozen soils not correctly detected in winter. Improving the RFI filtering method and the quality of the retrieval algorithm inputs, such as land surface temperature and land cover, would certainly improve the accuracy of the retrieved soil moisture.

13.
Sensors (Basel) ; 10(8): 7561-75, 2010.
Article in English | MEDLINE | ID: mdl-22163615

ABSTRACT

A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R(2) > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.


Subject(s)
Color/standards , Radiometry/methods , Algorithms , Bayes Theorem , Environment , Models, Theoretical , Oceans and Seas , Reproducibility of Results , Seawater/analysis
14.
Sensors (Basel) ; 9(3): 1409-22, 2009.
Article in English | MEDLINE | ID: mdl-22573962

ABSTRACT

The potential for directional optical and thermal imagery is very large. Field measurements have been performed with a goniometer on which thermal instruments were attached. In order to reduce dynamical effects the goniometer was adjusted to run in automated mode, for zenith and azimuthal direction. Directional measurements were performed over various crops with increasing heterogeneity. The improvements to the goniometer proved successful. For all the crops, except the vineyard, the acquisition of the directional thermal brightness temperatures of the crops went successfully. The large scale heterogeneity of the vineyard proved to be larger then the goniometer was capable of. The potential of directional thermal brightness temperatures has been proven.

15.
Sensors (Basel) ; 8(9): 5479-5491, 2008 Sep 03.
Article in English | MEDLINE | ID: mdl-27873825

ABSTRACT

This paper reports on the analysis of a 2.5 year-long time series of ASAR wide swath mode (WSM) observations for characterizing the soil moisture dynamics. The employed ASAR WSM data set consists of 152 VV-polarized scenes acquired in the period between April 2005 and September 2007 over the Naqu river basin located on the Tibetan Plateau. For four different spatial domains, with areas of 30x30 km², 5x5 km² and (two domains of) 1x1 km², the mean backscatter (σo) and the standard deviation (stdev) have been computed for each ASAR acquisition. Comparison of the mean σo values with the stdev values results in a specific triangular distribution of data points for all spatial domains. Analysis of the mean σo and stdev with respect to in-situ soil moisture measurements demonstrates that this triangular shaped distribution can be explained by soil moisture dynamics during monsoon and winter periods. This shows that the relationship between the spatial mean soil moisture and variability is not uniquely defined and may change throughout seasons. Downscaling of coarse resolution soil moisture products should, therefore, be ideally based on additional near real time data sources. In this context, the presented results could form a basis for the development of SAR-based soil moisture downscaling methodologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...