Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(29): 13223-13230, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38986039

ABSTRACT

The Block V of the RTX domain of the adenylate cyclase protein from Bordetella pertussis is disordered, and upon binding eight calcium ions, it folds into a beta roll domain with a C-terminal capping group. Due to their similar ionic radii and coordination geometries, trivalent lanthanide ions have been used to probe and identify calcium-binding sites in many proteins. Here, we report using a FRET-based assay that the RTX domain can bind rare earth elements (REEs) with higher affinities than calcium. The apparent disassociation constants for lanthanide ions ranged from 20 to 75 µM, which are an order of magnitude higher than the affinity for calcium, with a higher selectivity toward heavy REEs over light REEs. Most proteins release bound ions at mildly acidic conditions (pH 5-6), and the high affinity REE-binding lanmodulin protein can bind 3-4 REE ions at pH as low as ∼2.5. Circular dichroism (CD) spectra of the RTX domain demonstrate pH-induced folding of the beta roll domain in the absence of ions, indicating that protonation of key amino acids enables structure formation in low pH solutions. The beta roll domain coordinates up to four ions in extreme pH conditions (pH < 1), as determined by equilibrium ultrafiltration experiments. Finally, to demonstrate a potential application of the RTX domain, REE ions (Nd3+ and Dy3+) were recovered from other non-REEs (Fe2+ and Co2+) in a NdFeB magnet simulant solution (at pH 6).


Subject(s)
Metals, Rare Earth , Metals, Rare Earth/chemistry , Hydrogen-Ion Concentration , Lanthanoid Series Elements/chemistry , Bordetella pertussis/enzymology , Bordetella pertussis/chemistry , Binding Sites , Protein Binding , Protein Domains , Calcium/chemistry , Calcium/metabolism
2.
Environ Sci Technol ; 57(48): 19902-19911, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37983372

ABSTRACT

As global demands for rare-earth elements (REEs) continue to grow, the biological recovery of REEs has been explored as a promising strategy, driven by potential economic and environmental benefits. It is known that calcium-binding domains, including helix-loop-helix EF hands and repeats-in-toxin (RTX) domains, can bind lanthanide ions due to their similar ionic radii and coordination preference to calcium. Recently, the lanmodulin protein from Methylorubrum extorquens was reported, which has evolved a high affinity for lanthanide ions over calcium. Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile, which has been explored for use in bioleaching for metal recovery. In this report, A. ferrooxidans was engineered for the recombinant intracellular expression of lanmodulin. In addition, an RTX domain from the adenylate cyclase protein of Bordetella pertussis, which has previously been shown to bind Tb3+, was expressed periplasmically via fusion with the endogenous rusticyanin protein. The binding of lanthanides (Tb3+, Pr3+, Nd3+, and La3+) was improved by up to 4-fold for cells expressing lanmodulin and 13-fold for cells expressing the RTX domains in both pure and mixed metal solutions. Interestingly, the presence of lanthanides in the growth media enhanced protein expression, likely by influencing protein stability. Both engineered cell lines exhibited higher recoveries and selectivities for four tested lanthanides (Tb3+, Pr3+, Nd3+, and La3+) over non-REEs (Fe2+ and Co2+) in a synthetic magnet leachate, demonstrating the potential of these new strains for future REE reclamation and recycling applications.


Subject(s)
Acidithiobacillus , Lanthanoid Series Elements , Metals, Rare Earth , Calcium/metabolism , Acidithiobacillus/genetics , Acidithiobacillus/chemistry , Acidithiobacillus/metabolism , Lanthanoid Series Elements/metabolism , Ions/metabolism
3.
Sensors (Basel) ; 23(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37571594

ABSTRACT

Remote sensing image object detection holds significant research value in resources and the environment. Nevertheless, complex background information and considerable size differences between objects in remote sensing images make it challenging. This paper proposes an efficient remote sensing image object detection model (MSA-YOLO) to improve detection performance. First, we propose a Multi-Scale Strip Convolution Attention Mechanism (MSCAM), which can reduce the introduction of background noise and fuse multi-scale features to enhance the focus of the model on foreground objects of various sizes. Second, we introduce the lightweight convolution module GSConv and propose an improved feature fusion layer, which makes the model more lightweight while improving detection accuracy. Finally, we propose the Wise-Focal CIoU loss function, which can reweight different samples to balance the contribution of different samples to the loss function, thereby improving the regression effect. Experimental results show that on the remote sensing image public datasets DIOR and HRRSD, the performance of our proposed MSA-YOLO model is significantly better than other existing methods.

4.
Langmuir ; 37(20): 6115-6122, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33974431

ABSTRACT

Polyproline peptide sequences have gained popularity as anchors for peptide-based self-assembled monolayers (SAMs) due to their attractive properties. In this work, peptides containing the polyproline II helix (PPII) conformation were designed and assembled on gold (Au). A quartz crystal microbalance with dissipation was used to characterize SAM formation kinetics and related properties. Peptides were designed with the sequence (GPPPPPG)2C. It was discovered that a biexponential adsorption and rearrangement model describes the binding kinetics of the PPII-containing peptide on Au. In this model, an initial reversible binding step is followed by an irreversible rearrangement step, given by parameter kt. This study found kt to be approximately 0.00064 s-1 for the PPII-containing peptides. Similarly, we found that the adsorption of the PPII-containing peptide on Au, given by ΔGads, was thermodynamically favorable (-7.8 kcal mol-1) and comparable to other common thiol terminated SAMs on Au. Furthermore, we characterized SAM properties via QCM-D, Fourier-transform infrared (FTIR) spectroscopy, and electrochemical techniques to reveal high molecular density SAMs consisting of PPII helices. In addition, these SAMs were found to have high antifouling properties. Overall, this study characterizes the fundamental assembly mechanisms, particularly, rearrangement of PPII-containing peptides for the first time, which will be useful in the designing of future peptide-based SAMs with high surface coverage and antifouling properties.


Subject(s)
Gold , Peptides , Adsorption , Amino Acid Sequence
5.
RSC Adv ; 10(64): 39328-39337, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-35518430

ABSTRACT

Precipitation of struvite (MgNH4PO4·6H2O), a slow-release fertilizer, provides a means of recycling phosphate from wastewater streams. In this work, a high-throughput struvite precipitation method is developed to investigate the effects of a peptide additive. The reactions occurred in small volumes (300 µL or less) in a 96-well plate for 45 minutes. The formation of struvite was monitored by fitting absorbance at 600 nm over time to a first order model with induction time, with the addition of peptide inducing significant changes to the yield parameter and formation constant in that model. The impact of struvite seed dosing was also investigated, highlighting the importance of optimization when peptide is present. The composition of the precipitate was confirmed through Fourier-transform infrared spectroscopy, while morphology and crystal size were analyzed through optical microscopy. Crystals had a higher aspect ratio when precipitated with the peptide. Finally, the utility of the high-throughput platform was demonstrated with a 25 full factorial design to capture the effects and interactions of: magnesium dose, mixing time, seed dose, pH, and temperature. Overall, this study quantifies novel effects of a sequence-defined peptide on struvite formation and morphology via a newly developed high throughput platform.

6.
Soft Matter ; 14(18): 3528-3535, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29675538

ABSTRACT

Control of ionomer thin films on metal surfaces is important for a range of electrodes used in electrochemical applications. Engineered peptides have emerged as powerful tools in electrode assembly because binding sites and peptide structures can be modulated by changing the amino acid sequence. However, no studies have been conducted showing peptides can be engineered to interact with ionomers and metals simultaneously. In this study, we design a single-repeat elastin-like peptide to bind to gold using a cysteine residue, and bind to a perfluorinated sulfonic-acid ionomer called Nafion® using a lysine guest residue. Quartz crystal microbalance with dissipation monitoring and atomic force microscopy are used to show that an elastin-like peptide monolayer attached to gold facilitates the formation of a thin, phase-separated ionomer layer. Dynamic light scattering confirms that the interaction between the peptide with the lysine residue and the ionomer also happens in solution, and circular dichroism shows that the peptides maintain their secondary structures in the presence of ionomer. These results demonstrate that elastin-like peptides are promising tools for ionomer control in electrode engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...